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A B S T R A C T

Missing data is an inevitable and ubiquitous problem for traffic data collection in intelligent
transportation systems. Recent research has employed graph neural networks (GNNs) for
spatiotemporal data imputation and achieved promising performance. However, there still exist
two limitations to be addressed: first, existing approaches are generally limited in directly
leveraging global spatiotemporal information from different nodes at different time; second,
most of these approaches do not consider the unique characteristics of transportation systems
or traffic data, including dynamic spatial dependencies and correlated missing patterns. To fill
these research gaps, we propose a novel deep learning framework called Memory-augmented
Dynamic Graph Convolution Networks (MDGCN) to impute missing traffic data. The model
uses a recurrent layer to capture temporal information and a graph convolution layer to capture
spatial information. To address the first research gap, we introduce an external memory network
to store and share the global spatiotemporal information across the traffic network. For the
second research gap, a graph structure estimation technique is proposed to learn dynamic spatial
dependencies directly from traffic data. In addition, four types of missing patterns with various
missing ratios are considered in model evaluation. Extensive experiments based on two public
traffic speed datasets are conducted. The results show that our proposed model outperforms
existing state-of-the-art deep learning approaches in all kinds of missing scenarios, and both
the proposed external memory network and graph structure estimation technique contribute
to the model performance. The model performance is competitive in most cases even without
complete training data.

1. Introduction

Traffic data from real traffic systems plays an essential role in transportation research and applications, such as predicting
traffic conditions, planning driving routes, and optimizing traffic flows. Traffic data is mainly collected from two types of sensors:
stationary sensors (e.g., loop detectors) and mobile sensors (e.g., GPS probes). However, missing data is an inevitable problem
for both stationary and mobile sensors. Stationary sensors can easily suffer from device problems such as detector malfunction,
communication failure and power outage, whereas the data collected from mobile sensors is usually sparse with highly erratic spatial
and temporal resolutions (Asif et al., 2013). Missing data problems seriously affect the real-time monitoring of traffic conditions
and further limit other downstream applications. Therefore, how to estimate missing data, or traffic data imputation, becomes a
critical issue.
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The traffic data imputation problem has received much attention over the years. Early studies mainly model traffic data of each
ocation as time series and neglect the spatial correlations (Smith et al., 2003; Zhong et al., 2004). Recently, matrix (or tensor)
actorization methods have been introduced for traffic data imputation, and shown to be effective in retrieving correlations across
ifferent dimensions (Chen et al., 2019; Chen and Sun, 2021). However, these methods only rely on the global low-rank structure
nd usually do not explicitly model the underlying local consistency such as the spatial constraints of road networks or the temporal
moothness. As a result, these models may be limited in capturing the complexity of spatiotemporal dependencies in traffic data.
ith the proven success of deep learning models in a wide range of tasks, neural network-based approaches have also been adopted

or the data imputation problem, including Autoencoders (Duan et al., 2016), Recurrent Neural Networks (RNNs) (Berglund et al.,
015; Li et al., 2018) and Generative Adversarial Networks (GANs) (Yoon et al., 2018; Luo et al., 2018). Recent studies have
hifted more focus to Graph Neural Networks (GNNs) for reconstructing multivariate time series (Cini et al., 2021; Ye et al., 2021)
nd demonstrated the effectiveness of GNNs in capturing spatial dependencies at the network level. Despite promising results of
ntroducing GNNs, we argue that there are still two important research gaps.

First, existing models are generally limited in directly leveraging the global spatiotemporal information from different nodes at
ifferent time to enhance the imputation performance. Most previous graph learning approaches use two separate components to
apture the localized spatial dependency and temporal smoothness. By feeding the learned representations from spatial and temporal
odeling components to each other, they can only indirectly capture spatiotemporal information from other nodes at other time

teps. However, we believe that directly utilizing such global spatiotemporal information can significantly enhance the imputation
erformance, especially when spatial or temporal information is limited.

Second, the unique characteristics of transportation systems or traffic data are often overlooked in most existing GNN-based
tudies for traffic imputation. One such characteristic lies in the dynamism of traffic systems. While existing approaches are usually
eveloped for static graphs with a pre-defined adjacency matrix, the spatiotemporal dependencies across a traffic network can
hange dynamically and are challenging to specify due to ever-changing traffic situations. It is almost impossible to capture all the
ynamics in a transportation system using a pre-defined adjacency matrix. Although some recent techniques have been proposed
o model dynamic spatial dependencies across traffic networks, they are developed for prediction tasks, and it is unknown whether
hey can properly handle the incomplete and heterogeneous data for imputation tasks. In addition, for real-world traffic data, the
issing values are often temporally or spatially correlated. For stationary sensors this may occur due to regional malfunction or

ong-term maintenance backlog (Li et al., 2018). For mobile sensors this often happens in urban areas with low traffic volumes.
xisting research focus more on random missing scenarios in which missing data points are completely independent of each other.
hether GNN-based models can properly reconstruct traffic data for correlated missing patterns with various missing ratios is still

nderexplored.
To address the issues above, we propose a novel deep learning architecture, called Memory-augmented Dynamic Graph

onvolution Networks (MDGCN), to provide accurate and robust imputation results for different missing patterns. It consists of
everal spatiotemporal blocks (ST-blocks), each comprises a bidirectional recurrent layer to capture temporal dependencies and
graph convolution layer to capture spatial dependencies. An external memory network is introduced to store and share global

patiotemporal information from different sensors at different time steps. To model dynamic spatial correlations, a graph structure
stimation layer is incorporated in the ST-blocks. To validate the effectiveness of our model, we conduct experiments on two public
atasets, one collected from a freeway network in Los Angeles, CA, and the other from an urban road network in Seattle, WA. The
esults show that our model outperforms the state-of-the-art deep learning methods significantly under diverse missing scenarios.
e also test the model under different data conditions, and find competitive model performance in most situations even with only

ncomplete training data. Our main contributions are as follows:

• We propose a memory-augmented graph learning approach to better leverage both global and local spatiotemporal information
for the traffic data imputation problem. To the best of our knowledge, we are among the first to incorporate memory neural
networks with GNNs for the imputation problem.

• We introduce an external memory network to store and share the global spatiotemporal information across the traffic network.
Specifically, we cluster different nodes to several groups and the shareable information of each group is stored in a learned
memory matrix. The knowledge for imputation is then distilled with an attention mechanism.

• We design a graph structure estimation technique to learn dynamic spatial dependencies on the network structure directly
from traffic data. This is particularly important for transportation systems because of the time-varying flow distributions and
traffic conditions.

• Extensive experiments are conducted to compare our proposed model with several state-of-the-art deep learning models in
four types of missing patterns with a wide range of missing ratios. The results indicate the superior performance of our model
under diverse missing scenarios, and validate the effects of the proposed external memory network and dynamic adjacency
matrices.

. Literature review

Previous studies have developed a variety of imputation methods based on different missing patterns for different types of traffic
ata. The performance of a method can be greatly influenced by the specific missing pattern or data type. Therefore, in this section,
e first review the methods for traffic data imputation, and then summarize the different missing patterns and traffic data used in

he literature. In addition, we provide a review of GNN-based models for various traffic applications to better position our paper in
2

he field.
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2.1. Traffic data imputation methods

Early models for traffic data imputation mainly rely on temporal patterns and barely utilize the spatial structure of traffic data.
he simplest method is Historical Average, which fills missing values based on the average values of the same time intervals in the
ast (Smith et al., 2003). Ni and Leonard (2005) employed a Bayesian network to learn the probability distribution from observed
ata and used the best fit to impute missing values. Qu et al. (2009) introduced a technique called probabilistic principle component
nalysis (PPCA) which utilizes daily periodicity and interval variation of traffic data. Recent research incorporates spatial information
nto missing data reconstruction. Aydilek and Arslan (2013) combined support vector regression (SVR) with a genetic algorithm to
apture both spatial and temporal relationships in the traffic network. Laña et al. (2018) introduced a spatial context sensing model
o reconstruct traffic data using information from surrounding sensors. These models demonstrate that spatial information is helpful
or traffic data imputation. However, they have focused on utilizing local spatial information from neighborhood locations and failed
o make full use of global spatiotemporal information.

Recently, matrix (or tensor) factorization methods have been introduced for traffic data imputation, which construct traffic data
s a multi-dimensional matrix and estimate a low-rank approximation of the incomplete matrix. Chen et al. (2019) extended Bayesian
robabilistic matrix factorization to high-order tensors and applied it to impute incomplete traffic data. A temporal factorization
ramework was proposed by Chen and Sun (2021), which combines low-rank matrix factorization with vector autoregressive process.
ompared with previous models, tensor factorization is good at capturing multi-dimensional structural dependencies and thus
aking imputations at the system level. However, it only applies to statistical data with a low rank and needs to be learned from

cratch for every new batch of incomplete data (Zhang et al., 2021b). Moreover, considering the nonlinearity and complexity of
patiotemporal dependencies in traffic data, it might be difficult for tensor factorization models to fully retrieve traffic features and
rovide robust imputation with diverse missing patterns and missing ratios.

With the recent advances in deep learning, a number of deep neural network models have also been developed for traffic data
mputation. Compared with the tensor factorization approach, deep learning models do not make additional assumptions about the
ata and can be pre-trained for online application when sufficient training data is provided. Duan et al. (2016) first introduced
eep learning to the traffic data imputation problem using denoising stacked autoencoders. Recent studies based on recurrent
etworks have achieved great success for generic imputation tasks (Lipton et al., 2016; Liu et al., 2019). In particular, Berglund et al.
2015) employed bidirectional RNNs as generative models to fill in missing gaps in text data. Cao et al. (2018) put forward a novel
mputation approach for time series which utilizes feature correlations in a bidirectional recurrent dynamical system. Generative
dversarial Networks (GANs) have also been applied. For example, Yoon et al. (2018) adapted GANs to learn the distribution of data,
hich is further used to generate missing values. Luo et al. (2018) incorporated GANs with recurrent units for multivariate time series

mputation. Although these approaches demonstrate the effectiveness of deep learning in the field of data imputation, they do not
ocus on traffic data and barely consider spatial information across the transportation network. To leverage spatial correlations, Li
t al. (2018) developed a multi-view learning method with Long Short-Term Memory (LSTM) for temporal dependencies and SVR for
patial dependencies. Asadi and Regan (2019) proposed a convolution recurrent autoencoder for traffic data imputation, using multi-
ange CNNs to model spatial correlations. While CNNs work well for Euclidean correlations in grid-structured data (e.g., images),
hey are not well suited for the non-Euclidean relationships in irregular road networks.

Recently, GNNs have shown effectiveness in learning spatiotemporal representations through message passing (Wu et al., 2020).
ased upon this, Wu et al. (2020) developed a Graph Convolutional Network (GCN)-based model to recover data for unobserved
ensors (i.e., kriging). Spinelli et al. (2020) solved the data imputation problem with an adversarially-trained GNN. A GNN-based
enoising autoencoder was developed by Kuppannagari et al. (2021) for the imputation of smart power grids. Cini et al. (2021)
ntroduced a GNN-based imputation model to reconstruct generic multivariate time series. These studies do not consider the unique
haracteristics of transportation systems or traffic data, such as dynamic spatial dependencies and correlated missing patterns. To
olve the traffic data imputation problem, Zhang et al. (2021a) designed a graph convolutional recurrent module, which however
till neglects spatial dependencies evolving with time. Ye et al. (2021) used Graph Attention Networks (GATs) to adaptively
earn the spatial dependencies between adjacent sensors. Nevertheless, they assume that spatial dependencies only exist between
eographically adjacent locations and cannot capture the global spatiotemporal information across the traffic network.

.2. Missing patterns and traffic data types in previous studies

Missing patterns and data types can significantly influence the imputation performance of any method. Previous studies generally
lassify the patterns of missing data into three classes: Missing Completely at Random, Missing at Random and Not Missing at
andom (Little and Rubin, 2019). More specifically, Li et al. (2018) classified the missing patterns in intelligent transportation
ystems into four categories: (1) Random Missing (RM) (Fig. 1a), in which missing values are independent of each other; (2)
emporally correlated Missing (TCM) (Fig. 1b), in which missing values have temporal correlations; (3) Spatially correlated Missing
SCM) (Fig. 1c), in which missing values are spatially correlated to their neighbors’ readings; (4) Block Missing (BM) (Fig. 1d),
n which missing values are both temporally and spatially correlated and form blocks. This classification is also adopted in our
esearch. Based upon missing ratios, missing patterns can also be classified as non-completely missing and completely missing. This
tudy focuses on non-completely missing patterns, where at least one observed data exists in both spatial and temporal dimensions.
ompletely missing patterns include completely TCM (Wu et al., 2020) and completely SCM (Li et al., 2020b). In completely TCM,
ome sensors/locations are totally unobserved, whereas in completely SCM, no information is observed for some time slots. These
3

ases are not considered in this paper. Distinction can also be made regarding the traffic data types. Due to differences in the data
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Fig. 1. Patterns of missing data.

Table 1
Methods, data and missing patterns in the literature.

Paper Method Data Missing patterns Missing ratio

FD UD RM TCM SCM BM

Ni and Leonard (2005) Bayesian Networks Y Y 30%
Zhang and Liu (2009) Least Squares SVR Y Y 20%–50%
Qu et al. (2009) PPCA Y Y Y 0%–50%
Aydilek and Arslan (2013) SVR+genetic algorithm Y Y 1%–25%
Ran et al. (2016) tensor factorization Y Y 5%–80%
Duan et al. (2016) denoising autoencoders Y Y Y 5%–50%
Bae et al. (2018) two cokriging methods Y Y Y Y Y 10%–40%
Laña et al. (2018) two machine learning models Y Y Y Y 0%–100%
Li et al. (2018) LSTM + SVR Y Y Y Y Y 5%–50%
Chen et al. (2019) tensor factorization Y Y 10%–50%
Asadi and Regan (2019) recurrent convolutional autoencoders Y unknown
Li et al. (2020a) stacked autoencoders Y Y Y 5%–40%
Li et al. (2020b) prophet + Random Forest Y Y Y 10%–90%
Wu et al. (2020) GCNs Y Y 100%
Chen and Sun (2021) tensor factorization Y Y Y Y 30%, 70%
Zhang et al. (2021b) Generative Adversarial Networks Y Y Y Y 10%–80%
Zhang et al. (2021a) GCNs Y Y 20%–70%
Ye et al. (2021) GATs Y Y Y 10%–90%
Cini et al. (2021) GNNs Y Y Y 25%

ollection methods and underlying road networks, traffic data can be generally classified into freeway data (FD) and urban road
etwork data (UD). FD is usually collected with stationary sensors on freeway networks while UD is collected with mobile sensors
e.g., probe vehicles) on urban road networks. Typically, the former has higher temporal granularity, while the latter has higher
patial coverage.

Table 1 summarizes the traffic data types, missing patterns and missing ratios in the literature. We can find that RM is the most
ommonly studied missing pattern, while the other missing patterns with temporally or spatially correlated missing values are less
iscussed. Compared with RM, the other patterns are more challenging due to lack of spatial or temporal adjacent information. As
result, approaches developed for random missing values might not be suitable for other missing patterns. Additionally, previous

tudies are usually conducted on either freeway networks or urban road networks. However, the two types of data may display
ifferent traffic characteristics due to different road design and functionality. Methods optimized for FD may not work well for UD.
issing ratios also affect the performance of models. Some previous models are developed for low missing ratios and might fail to

how stable performance when the missing ratio is high. Therefore, a general approach is needed to provide accurate and robust
esults for different missing patterns and data types in a wide range of missing ratios.

.3. Graph neural networks in traffic research

Beyond traffic data imputation, GNNs have been successfully applied to various prediction tasks in traffic research, including
raffic speed prediction (Yu et al., 2017), travel demand prediction (Liang et al., 2022a,b), vehicle trajectory prediction (Liang
nd Zhao, 2021), and traffic accident prediction (Yu et al., 2021). To jointly extract spatiotemporal features hidden in the traffic
etwork, researchers typically use GNNs to capture network-level spatial relations, along with RNNs or CNNs to extract temporal
ependencies. By combining the recurrent architecture with diffusion graph convolution layers, Li et al. (2017) introduced a deep
earning framework for traffic forecasting. Yu et al. (2017) used graph convolutions to extract spatial features and gated CNNs
4
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to extract temporal features. These approaches are all based on a fixed and pre-determined graph structure. To uncover the true
dependencies hidden in the traffic network, Wu et al. (2019) developed an adaptive adjacency matrix to represent hidden spatial
dependencies. Recently, attention mechanisms have been introduced to model spatiotemporal dependencies evolving with time. A
transform attention mechanism was applied by Zheng et al. (2020) to adaptively learn spatial and temporal dependencies from traffic
features. Park et al. (2020) developed a novel spatial attention mechanism by introducing sentinel vectors to control for irrelevant
features. However, all these approaches only consider the local spatial dependency and temporal smoothness of traffic data, failing
to directly leverage global spatiotemporal information from different nodes at different time. In addition, these approaches are all
designed for prediction tasks and may not be suitable for traffic data imputation. Compared with prediction tasks, the imputation
problem is challenging because of the limited observed data and the diversity of missing patterns. A robust method that can leverage
both global and local information hidden in traffic data for the imputation problem is still needed.

3. Preliminaries

In this section, we first elaborate on how we represent the transportation network as a graph and then formulate our problem
efinition.

.1. Graph representation of transportation networks

In this work, we define a traffic network as a weighted directed graph 𝐺 = (𝑉 ,𝐸,𝑨), where 𝑉 is a set of 𝑁 = |𝑉 | connected
nodes (i.e., sensors or road links), 𝐸 a set of edges indicating the connectivity between nodes, and 𝑨 ∈ R𝑁×𝑁 a weighted adjacency

atrix representing the proximity between nodes. Existing approaches often define the adjacency matrix as a function of distance or
onnectivity. However, our previous research has shown that transportation networks are sometimes heterophilous, where connected
oad segments or adjacent sensors can have different traffic features due to the regulating effect of traffic lights. Therefore, we
etermine the adjacency matrix 𝑨 based on both geographic and semantic correlations. For each node pair, we first define two
imilarity weights, one for geographical proximity and the other for traffic pattern similarity. For sensor networks, the geographical
roximity between two nodes is determined as:

𝑎𝑔,𝑖𝑗 = exp(−(
𝑑𝑖𝑠𝑡𝑖𝑗
𝛿𝑔

)2), (1)

where 𝑎𝑔,𝑖𝑗 is the weight for geographical proximity between sensor 𝑖 and 𝑗, 𝑑𝑖𝑠𝑡𝑖𝑗 is the travel distance between 𝑖 and 𝑗 and 𝛿𝑔 is
the standard deviation of travel distances. For road networks, 𝑎𝑔,𝑖𝑗 = 1 if two roads are connected and 0 otherwise. For both sensor
and road networks, the traffic pattern similarity between two nodes is defined as:

𝑎𝑠,𝑖𝑗 = exp(−(
‖𝑝𝑖 − 𝑝𝑗‖

𝛿𝑠
)2), (2)

where 𝑎𝑠,𝑖𝑗 is the weight for pattern similarity between node 𝑖 and 𝑗, 𝑝𝑖 and 𝑝𝑗 are the historical traffic time series of nodes 𝑖 and 𝑗
and 𝛿𝑠 is the standard deviation of time series differences. In cases of incomplete training data, the historical time series are defined
based upon time periods when both node 𝑖 and 𝑗 are observed. Given geographical and traffic pattern similarity weights, we define
the adjacency matrix 𝑨 as:

𝑨𝑖𝑗 =

{

1 𝑎𝑔,𝑖𝑗 > 𝜅𝑔 and 𝑎𝑠,𝑖𝑗 > 𝜅𝑠,
0 𝑎𝑔,𝑖𝑗 ≤ 𝜅𝑔 or 𝑎𝑠,𝑖𝑗 ≤ 𝜅𝑠,

(3)

where 𝑨𝑖𝑗 denotes the connectivity between node 𝑖 and 𝑗 and 𝜅𝑔 , 𝜅𝑠 are the thresholds to control for the sparsity of the adjacency
matrix. Note that if there are fewer than two time periods when node 𝑖 and 𝑗 are observed simultaneously, 𝑎𝑠,𝑖𝑗 is set as 1. In this
way, 𝑨𝑖𝑗 depends only on geographic proximity.

3.2. Problem definition

The goal of traffic data imputation is to recover missing values given observed values from a traffic network. Note that we
pre-assume the stationary distribution of the traffic data and the missing values. For each node 𝑣 in the traffic network, we denote
its observed value at timestamp 𝑡 as 𝑥𝑣𝑡 ∈ R. If no data is observed, 𝑥𝑣𝑡 = 0. At each time 𝑡, the traffic data observed on 𝐺 is
denoted as a graph signal 𝑿𝑡 = {𝑥1𝑡 , 𝑥

2
𝑡 ,… , 𝑥𝑁𝑡 },𝑿𝑡 ∈ R𝑁 . Suppose the imputation time interval is [1, 𝑇 ], the traffic data imputation

problem aims to learn a function 𝐹 (∗) that is able to reconstruct the complete traffic data 𝑿̃1∶𝑇 ∈ R𝑁×𝑇 given observed data
𝑿1∶𝑇 = {𝑿1,𝑿2,…𝑿𝑇 },𝑿1∶𝑇 ∈ R𝑁×𝑇 and the graph structure 𝐺:

𝑿̃1∶𝑇 = 𝐹 (𝑿1∶𝑇 , 𝐺). (4)

4. Methodology

In this section, we elaborate on our proposed model for traffic data imputation. As shown in Fig. 2, MDGCN is composed of 𝑆
spatiotemporal blocks (ST-blocks) and an output layer. ST-blocks are used to retrieve spatiotemporal patterns from the observed
5
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Fig. 2. The architecture of MDGCN.

traffic data. Each ST-block comprises a bidirectional recurrent network to capture temporal information (see Section 4.1) and a
dynamic graph convolution network to capture spatial information (see Section 4.2). To model spatial dependencies evolving with
time, a graph structure estimation layer is incorporated in the graph convolution network to learn adjacency matrices directly from
traffic data. In addition, an external memory network is introduced to directly store and share global spatiotemporal information
across the traffic network (see Section 4.3). The output layer is a feed-forward network which maps the output representations of
the ST-blocks to the imputation results. The details of each module are described as follows.

4.1. Bidirectional recurrent network to capture temporal information

Existing GNN-based approaches for spatiotemporal prediction or imputation tasks typically employ variants of RNNs or CNNs to
capture temporal dependencies. Through empirical comparisons, we choose LSTM, which achieves relatively good performance in
our specific application. This is likely because LSTM is better at capturing long-term dependencies in time series and can benefit the
imputation performance especially when adjacent temporal information is missing. A basic LSTM network is unidirectional, which
is not suitable for the traffic data imputation problem since it can only utilize the temporal information prior to the missing time
interval. To tackle this issue, we extend the unidirectional LSTM to bidirectional LSTM (BLSTM) by using two LSTM networks, one
in the forward time direction and the other in the backward direction. In this way, the model is capable of exploiting information
from both the past and the future (Berglund et al., 2015).

The BLSTM network is applied to each node separately and identically. For each node 𝑣, the input of the BLSTM network is a
sequence of feature vectors, 𝒁𝑣 = {𝒛𝑣1, 𝒛

𝑣
2,… 𝒛𝑣𝑇 }, where 𝒛𝑣𝑡 denotes the feature vector of node 𝑣 at time 𝑡. For the BLSTM network

in the first ST-block, 𝒛𝑣𝑡 = 𝑥𝑣𝑡 , 𝒛
𝑣
𝑡 ∈ R1. If no data is observed, 𝑥𝑣𝑡 = 0. At each time step, the BLSTM network recursively takes 𝑧𝑣𝑡 as

the input vector and summarizes the historical and future information into two hidden state vectors 𝒉𝑓,𝑡,𝒉𝑏,𝑡 using

𝒉𝑓,𝑡, 𝒄𝑓,𝑡 = 𝐿𝑆𝑇𝑀(𝒛𝑣𝑡 ,𝒉𝑓,𝑡−1, 𝒄𝑓,𝑡−1), (5)

𝒉𝑏,𝑡, 𝒄𝑏,𝑡 = 𝐿𝑆𝑇𝑀(𝒛𝑣𝑡 ,𝒉𝑏,𝑡+1, 𝒄𝑏,𝑡+1), (6)
6
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where 𝒉𝑓,𝑡, 𝒄𝑓,𝑡 are the cell memory state vector and hidden state vector in the forward direction, 𝒉𝑏,𝑡, 𝒄𝑏,𝑡 are state vectors in the
backward direction. To integrate the learned features from both directions, the forward and backward hidden state vectors are
concatenated and mapped to the output vector 𝒛𝑣𝑙,𝑡 using a simple linear layer, given as:

𝒛𝑣𝑙,𝑡 = 𝑾 𝑙[𝒉𝑓,𝑡;𝒉𝑏,𝑡] + 𝜷𝑙 , (7)

where 𝑾 𝑙 is the parameter matrix for linear transformation, 𝜷𝑙 is the biased term.

4.2. Dynamic graph convolution network to capture spatial information

Previous research has shown that spatial dependencies of traffic data are related to directions on the traffic network (Liang and
Zhao, 2021). To capture the stochastic spatial dependencies across different directions, we introduce a Dynamic Graph Convolution
Network (DDGCN) based on the Diffusion Graph Convolutional Network (DGCN) proposed by Li et al. (2017), which models traffic
flow as a diffusion process. The working mechanism of the original DGCN is:

𝐷𝐺𝐶𝑁(𝑯) =
𝐾
∑

𝑘=1

(

𝐹𝑘(𝑨𝑓 )𝑯𝜽𝑘𝑓 + 𝐹𝑘(𝑨𝑏)𝑯𝜽𝑘𝑏
)

, (8)

where 𝑯 ∈ R𝑁×𝑐𝑖𝑛 is the input graph signals, 𝑨𝑓 = 𝑨∕𝑟𝑜𝑤𝑠𝑢𝑚(𝑨), 𝑨𝑏 = 𝑨𝑇 ∕𝑟𝑜𝑤𝑠𝑢𝑚(𝑨𝑇 ) are the forward and backward transition
matrices respectively, 𝐾 is the number of diffusion steps, 𝜽𝑘𝑓 ,𝜽

𝑘
𝑏 ∈ R𝑐𝑖𝑛×𝑐𝑜𝑢𝑡 are learning parameters of the 𝑘th diffusion step that

defines how the received spatial information of each node is transformed, 𝑐𝑖𝑛, 𝑐𝑜𝑢𝑡 are the input and output vector dimensions of each
node. 𝐹𝑘(𝑨) is the recursive generating function for the Chebyshev polynomials given as 𝐹𝑘(𝑨) = 2𝑨𝐹𝑘−1(𝑨) − 𝐹𝑘−2(𝑨), 𝐹0(𝑨) = 𝑰 ,
and 𝐹1(𝑨) = 𝑨.

In our work, the input of the graph convolution network is a set of node features learned from the BLSTM network. The learned
features from BLSTM at each time step 𝑡 is denoted as 𝒁 𝑙,𝑡 = {𝒛1𝑙,𝑡, 𝒛

2
𝑙,𝑡...𝒛

𝑁
𝑙,𝑡}. For each time step 𝑡, in addition to the fixed transition

matrices 𝑨𝑓 ,𝑨𝑏, we learn a dynamic adjacency matrix 𝑨̃𝑑,𝑡 directly from 𝒁 𝑙,𝑡 using a graph structure estimation layer. The graph
structure estimation layer consists of two linear transformations with a ReLU activation in between:

𝑨̃𝑑,𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑅𝑒𝐿𝑈 (𝒁 𝑙,𝑡𝑾 1
𝑑 + 𝜷1

𝑑 )𝑾
2
𝑑 + 𝜷2

𝑑 ), (9)

where 𝑾 1
𝑑 ∈ R𝑐𝑖𝑛×𝑐ℎ ,𝑾 2

𝑑 ∈ R𝑐ℎ×𝑁 are the parameter matrices for linear transformation and 𝜷1
𝑑 ∈ R𝑐ℎ , 𝜷2

𝑑 ∈ R𝑁 are bias terms. We
apply the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function to normalize the learned adjacency matrix. Given the fixed transition matrices 𝑨𝑓 ,𝑨𝑏 and the learned
dynamic transition matrices 𝑨̃𝑑,𝑡, we formulate the dynamic graph convolution layer at time step 𝑡 as:

𝐷𝐷𝐺𝐶𝑁(𝒁 𝑙,𝑡) =
𝐾
∑

𝑘=1

(

𝐹𝑘(𝑨𝑓 )𝒁 𝑙,𝑡𝜽𝑘𝑓 + 𝐹𝑘(𝑨𝑏)𝒁 𝑙,𝑡𝜽𝑘𝑏 + 𝐹𝑘(𝑨̃𝑑,𝑡)𝒁 𝑙,𝑡𝜽𝑘𝑡
)

, (10)

where 𝜽𝑘𝑡 ∈ R𝑐𝑖𝑛×𝑐𝑜𝑢𝑡 is the parameter matrix of the 𝑘th diffusion step defining how the received information is transformed based
on the learned dynamic adjacency matrix.

The input of the DDGCN network is a graph-structured time series. To process multiple time steps in parallel, we extend DDGCN
to multi-dimensional tensors, given as:

𝑨̃𝑑,1∶𝑇 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑅𝑒𝐿𝑈 (𝒁 𝑙,1∶𝑇𝑾 1
𝑑 + 𝜷1

𝑑 )𝑾
2
𝑑 + 𝜷2

𝑑 ),

𝒁𝑔,1∶𝑇 =
𝐾
∑

𝑘=1

(

𝐹𝑘(𝑨𝑓,1∶𝑇 )⊗𝒁 𝑙,1∶𝑇 𝜽𝑘𝑓 + 𝐹𝑘(𝑨𝑏,1∶𝑇 )⊗𝒁 𝑙,1∶𝑇 𝜽𝑘𝑏 + 𝐹𝑘 ⊗ (𝑨̃𝑑,1∶𝑇 )𝒁 𝑙,1∶𝑇 𝜽𝑘𝑡
)

,
(11)

where ⊗ denotes the operation of batch matrix multiplication, 𝒁 𝑙,1∶𝑇 ∈ R𝑇×𝑁×𝑐𝑖𝑛 is the learned features from the BLSTM layer across
𝑇 time slots, 𝑨𝑓,1∶𝑇 ,𝑨𝑏,1∶𝑇 , 𝑨̃𝑑,1∶𝑇 ∈ R𝑇×𝑁×𝑁 are the adjacency matrices and 𝒁𝑔,1∶𝑇 ∈ R𝑇×𝑁×𝑐𝑜𝑢𝑡 is the output of the DDGCN layer.

In the case when no pre-defined graph structure is provided, we use only the learned adjacency matrices to model spatial
dependencies, given as:

𝒁𝑔,1∶𝑇 =
𝐾
∑

𝑘=1

(

𝐹𝑘(𝑨̃𝑑,1∶𝑇 )⊗𝒁 𝑙,1∶𝑇 𝜽𝑘𝑡
)

. (12)

To integrate the spatial and temporal information learned from the DDGCN and BLSTM networks, we employ a residual
connection (He et al., 2016) at the end of DDGCN, given as:

𝒁𝑟,1∶𝑇 = 𝒁 𝑙,1∶𝑇 +𝒁𝑔,1∶𝑇 . (13)

4.3. External memory network to directly model global spatiotemporal information

Inspired by the use of memory neural networks to uncover shareable information across cities (Yao et al., 2019), in this section,
we introduce an external memory network to capture the global spatiotemporal information from different nodes at different time
steps. The main idea is to store the spatiotemporal features shared by different nodes in a global memory, which can be further
7

transferred to missing data points to improve imputation accuracy. However, not every nodes share similar traffic patterns and
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it might easily introduce noise information if we simply compress the information from all nodes to a single representation. To
avoid attending unrelated nodes that are not helpful for imputation, we first cluster different nodes into 𝑄 groups according to their
similarity. Specifically, we utilize the spectral clustering method on the adjacency matrix defined in Section 3.1, and get a partition
of the transportation network. When the graph structure is unavailable, we propose to cluster nodes based on only traffic pattern
similarities. Each node 𝑣 then corresponds to a group denoted as 𝑔𝑣. Different nodes in the same group are expected to share similar
spatiotemporal patterns, and thus can transfer knowledge to each other. Then a memory matrix 𝑴 ∈ R𝑄×𝑐𝑚 is constructed, where
each row 𝑴𝑔 ∈ R𝑐𝑚 represents the shareable information of group 𝑔 and 𝑐𝑚 is the dimension of the representation vector. The
memory matrix 𝑴 is learned together with the model.

Based on the learned memory, an intuitive operation is to use the representation of the corresponding group to represent the
global information for each node. However, as traffic data is dynamically changing, the relationships between nodes and different
clusters also change. To capture such dynamics, we use an attention mechanism to adaptively transfer the pattern knowledge of
different clusters to the target node. Specifically, for each node 𝑣 at time step 𝑡, we first generate a query vector 𝒒𝑣𝑡 ∈ R𝑐𝑚 based on
𝒛𝑣𝑟,𝑡 using a simple linear layer:

𝒒𝑣𝑡 = 𝒛𝑣𝑟,𝑡𝑾 𝑞 + 𝒃𝑞 . (14)

where 𝑾 𝑞 ∈ R𝑐𝑜𝑢𝑡×𝑐𝑚 , 𝒃𝑞 ∈ R𝑐𝑚 are the parameters for linear transformation. The similarity between the query vector 𝒒𝑣𝑡 and the
pattern representations of different clusters is then computed as:

𝒔𝑣𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝒒𝑣𝑡𝑴
𝑇 ), (15)

where 𝒔𝑣𝑡 ∈ R𝑄 is the learned attention weights with each element 𝑠𝑣𝑡,𝑔 denoting the similarity of the patterns of node 𝑣 and group 𝑔 at
time step 𝑡. Finally, the global spatiotemporal information for node 𝑖 at time 𝑡 is represented as a weighted sum of the representations
of each cluster, given as:

𝒈𝑣𝑡 =
𝑄
∑

𝑔=1
𝑠𝑣𝑡,𝑔𝑴𝑔 , (16)

where 𝑴𝑔 ∈ R𝑐𝑚 is the learned representation of the 𝑔th cluster in memory 𝑴 and 𝒈𝑣𝑡 ∈ R𝑐𝑚 is the final representation of the global
spatiotemporal information for node 𝑣 at time 𝑡.

Finally, we use a fusion layer to integrate the learned spatiotemporal information from different modules:

𝒛𝑣𝑜,𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 (𝑾 𝑔𝑐𝑜𝑛𝑐𝑎𝑡(𝒈𝑣𝑡 , 𝒛
𝑣
𝑟,𝑡) + 𝜷𝑔)), (17)

where 𝑐𝑜𝑛𝑐𝑎𝑡(∗) denotes the concatenation operation, 𝑾 𝑔 ∈ R(𝑐𝑚+𝑐𝑜𝑢𝑡)×𝑐𝑏 , 𝜷𝑔 ∈ R𝑐𝑏 are the learned parameters, 𝑐𝑏 is the learned vector
dimension. A layer normalization layer (Ba et al., 2016) denoted as 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(∗) is added to stabilize the model parameters. The
output vector 𝒛𝑣𝑜,𝑡 will then serve as the input of the next ST-block or the output layer.

Following Yao et al. (2019), a clustering loss is defined to enforce the attention weights to be consistent with our pre-defined
categories. The formulation of the clustering loss is as follows:

𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = −
𝑆
∑

𝑖=1

𝑇
∑

𝑡=1

𝑁
∑

𝑣=1
𝒐𝑣 log(𝒔𝑣𝑡,𝑖), (18)

where 𝑆 is the number of ST-blocks, 𝒐𝑣 ∈ R𝑄 is a one-hot vector denoting the corresponding cluster of node 𝑣 and 𝒔𝑣𝑡,𝑖 is the learned
attention weights for node 𝑣 at time step 𝑡 in the 𝑖th ST-block.

4.4. Model setup

4.4.1. Loss function
The loss function is comprised of two parts, one is the reconstruction error of the traffic data and the other is the clustering loss

defined as Eq. (18). To make our trained model more general for all nodes in the traffic network, the reconstruction error is defined
on both observed and missing values following (Wu et al., 2020):

𝐿𝑚𝑠𝑒 =
𝑁
∑

𝑣=1

𝑇
∑

𝑡=1
(𝑥𝑣𝑡 − 𝑥̂𝑣𝑡 )

2, (19)

where 𝑥𝑣𝑡 , 𝑥̂
𝑣
𝑡 represent the true and estimated values of node 𝑣 at time 𝑡 respectively. The loss function is then defined as:

𝐿(𝜃) = 𝐿𝑚𝑠𝑒 + 𝜆𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟, (20)

where 𝜆 is a trade-off weight to balance different loss.

4.4.2. Training data generation
To make our model more robust to different missing ratios, we use Alg. 1 to generate random training samples from training

data. The key idea is to randomly generate a subset of training data 𝑿𝑠𝑎𝑚𝑝𝑙𝑒 and a binary mask matrix 𝑬𝑠𝑎𝑚𝑝𝑙𝑒 for model training.
8

𝑿𝑡𝑟𝑎𝑖𝑛 = 𝑿𝑠𝑎𝑚𝑝𝑙𝑒 ⊙ 𝑬𝑠𝑎𝑚𝑝𝑙𝑒 so that missing values are masked as zeros. ⊙ denotes the element-wise multiplication operation.
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Algorithm 1: Generating training samples
Input : historical data 𝑿 ∈ R𝑁×𝑃 over period [1, 𝑃 ] for training, missing type 𝑌 , the size of imputation window 𝑇 , batch size

𝐵, training iteration 𝐼
or 𝑖 in {1, 2, ...𝐼} do

Randomly choose a time point 𝑡 within range [1, 𝑃 − 𝑇 ];
Obtain sampled data 𝑿𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑿𝑡∶𝑡+𝑇 from 𝑿;
for 𝑗 in {1, 2, ...𝐵} do

Randomly generate a missing ratio 𝑟 within range (0, 1);
Generate a mask matrix 𝑬𝑠𝑎𝑚𝑝𝑙𝑒 according to 𝑌 and 𝑟;
𝑿𝑡𝑟𝑎𝑖𝑛 = 𝑿𝑠𝑎𝑚𝑝𝑙𝑒 ⊙ 𝑬𝑠𝑎𝑚𝑝𝑙𝑒;

end
Use sets {𝑿1∶𝐵

𝑡𝑟𝑎𝑖𝑛} to train DSTCGN;
nd

5. Experiments

5.1. Data description

In this study, we conduct experiments on two public traffic datasets, one is collected on a freeway network and the other is
ollected on an urban road network.
METR-LA (Jagadish et al., 2014) is a traffic speed dataset1 collected from 207 loop sensors on a freeway network of Los Angeles.

The data ranges from 2012-03-01 to 2012-06-30 with a sampling rate of 5 min. To compute the adjacency matrix 𝑨, we define
𝜅𝑔 = 0.1, 𝜅𝑠 = 0.1 through experiments.

INRIX-SEA (Cui et al., 2020) is a traffic speed dataset2 collected from multiple data sources including GPS probes, road sensors
and cell phone data on a road network in the Seattle downtown area. The data ranges from 2012-01-01 to 2012-12-31 with a
sampling rate of 5 min. In this research, we choose a sample of road networks consisting of 223 connected road links for experiments.
Our preliminary research shows that urban road networks are usually heterophilous, where connected road links often exhibit
different patterns. Therefore, we define 𝜅𝑔 = 0., 𝜅𝑠 = 0.8 for the computation of 𝑨 through experiments.

.2. Missing pattern generation

Following Li et al. (2018), we define four types of missing patterns. Methods for generating different missing patterns are
escribed in Appendix A.
Random Missing (RM) (Fig. 1a): missing values are completely independent of each other and displayed as randomly scattered

oints for each sensor (or road link). This may be due to temporary failure (e.g., power outage, communication error) for stationary
ensors and the uncertainty of movement for mobile sensors.
Temporally Correlated Missing (TCM) (Fig. 1b): missing values are dependent in the time dimension and appear as a

onsecutive time interval for each sensor (or road). For stationary sensors, this can be caused by long-term physical damage and
aintenance backlog (Li et al., 2018). For mobile sensors this may happen when a road has no GPS probes passing by for a long

ime.
Spatially Correlated Missing (SCM) (Fig. 1c): missing values are dependent in the spatial dimension and appear at neighboring

ensors or connected road links for each time slot. For stationary sensors this may occur due to regional power outage or
ommunication problems. For mobile sensors this may happen for urban areas with low traffic volumes.
Block Missing (BM) (Fig. 1d): missing values are dependent at both spatial and temporal dimensions. In this scenario, values

re missing at consecutive time intervals and spatial neighboring locations. For stationary sensors this is often caused by regional
ong-term malfunction. For mobile sensors this is common at mid-night when few GPS probes are working on the road network.

.3. Baselines

In the numerical experiment, we compare MDGCN with several state-of-the-art deep learning-based methods. Two groups of
aselines are included. The first group contains existing imputation methods:
Denoising Autoencoder (DAE) (Duan et al., 2016): a deep learning strategy that regards the traffic states of each sensor (or

oad) as a vector and uses stacked DAEs to impute missing values.

1 https://github.com/liyaguang/DCRNN
2 https://github.com/zhiyongc/Graph-Markov-Network
9
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Bidirectional LSTM (BiLSTM)3 (Berglund et al., 2015): a recurrent architecture that predicts the missing values using LSTM
odel in the forward and backward time directions simultaneously.
Bidirectional Recurrent Imputation for Time Series (BRITS) (Cao et al., 2018): a novel imputation method for time series

which utilizes inter-node feature correlations in a bidirectional recurrent system.
Convolution Bidirectional LSTM (CNN-BiLSTM) (Asadi and Regan, 2019): a convolution recurrent autoencoder that learns the

spatial information using multi-range convolutions and temporal information using bidirectional LSTM layers.
Graph Attention Convolutional Network (GACN) (Ye et al., 2021): a graph learning approach using graph attention

mechanisms to learn spatial correlations and standard convolution layers to learn temporal correlations.
The second group contains state-of-the-art GCN-based models in traffic research. Note that these models were designed for

prediction tasks and we have made every effort to adapt these baseline models for the imputation problem.
STGCN (Yu et al., 2017): a convolution framework which uses GCNs to extract spatial features and gated CNNs to extract temporal

features. In this model, the adjacency matrix is considered as prior knowledge and fixed throughout training.
GWNET (Wu et al., 2019): a graph neural network which captures spatial dependencies with generalized diffusion graph

convolution layers and temporal dependencies with dilated convolution layers. An adaptive adjacency matrix is learned through
node embedding to capture the hidden spatial dependencies in traffic data.

GMAN (Zheng et al., 2020): a graph multi-attention network which uses attention mechanisms to capture spatial and temporal
correlations. A spatial attention mechanism is proposed to model dynamic relevance between nodes based on real-time traffic
information and graph structures.

5.4. Experiment settings

All experiments are conducted on a NVIDIA 1080 Ti GPU. We use data from the first 60% time slots as the training set, the
following 20% as the validation set and the last 20% as the test set. We choose 𝑇 = 72 time steps (i.e., 5 min × 72 = 6 h) as the
imputation window. During training, we randomly generate training samples from the training set using Alg. 1. For each epoch, we
set the number of training iterations 𝐼 as 80 and batch size 𝐵 as 4. We fix the number of epochs to 400 for all experiments. All models
are trained using Adam optimizer with an initial learning rate of 0.001 and we decrease the learning rate to 0.0001 after 200 epochs.
During validation and test, the imputation is conducted using a sliding-window approach on: [𝑡, 𝑡+ 𝑇 ), [𝑡+ 𝑇 , 𝑡+ 2𝑇 ), [𝑡+ 2𝑇 , 𝑡+ 3𝑇 ),
tc.

The hyperparameters of our proposed model is tuned over the validation set using METR-LA data under RM scenarios.
pecifically, we first fix the number of ST-blocks 𝑆 as 2, the output dimension of the graph convolution layer as 64 and the hidden
imension of the output layer as 128 following Yu et al. (2017). For the BLSTM layer, we set the hidden state dimension as 128
nd the output dimension as 64, which is the same as the DDGCN layer to facilitate residual connection. The diffusion step of the
DGCN layer layer 𝐾 is set as 2 following the original setting of Li et al. (2017). To estimate dynamic adjacency matrices, the hidden
imension of the feed-forward network is selected from [128, 256, 512] and finally set as 256. For the external memory network,
e fix the memory vector dimension 𝑐𝑚 as 64, which is the same as the output dimension of BLSTM and DDGCN layers. The number
f clusters 𝑄 is tuned from 10 to 30 with a step size of 10. We find that the number of clusters does not influence the results much
nd we use 𝑄 = 30 in our experiments. For loss construction, we choose 𝜆 from 1𝑒 − 5, 1𝑒 − 3, 1𝑒 − 1 and the model achieves the
est performance when 𝜆 = 1𝑒− 3. For DAE, we set 3 hidden layers with a hidden dimension of 256. For BiLSTM, we use the same
ettings as the BLSTM layer in our proposed model. For BRITS, we set the hidden dimension of the RNN cells as 128 and use the
ame settings of Cao et al. (2018) for the other hyperparameters. We implement CNN-BiLSTM and GACN ourselves using the same
etwork hyperparameters reported in their papers. For STGCN, GWNET and GWAN, we adapt them to our specific application based
n their public codes. For GWNET, we replace its original temporal convolution layer with the one proposed by Yu et al. (2017),
hich achieves better performance in our specific application. For GWAN, we decrease the number of spatiotemporal blocks to 2
ue to the spatial limits of our computing resources. The mean absolute error (MAE), the root-mean-squared error (RMSE) and the
ean absolute percentage error (MAPE) are used to evaluate model performance.

. Results

.1. Imputation performance analysis

In this section, we compare the performance of MDGCN with the baseline models for different missing patterns and missing
atios ranging from 20% to 80%. Figs. 3 and 4 display the imputation performance of different models on METR-LA data and
NRIX-SEA data respectively. All the results are averaged over 3 independent runs. For each missing pattern and missing ratio, the
odels are evaluated on the test dataset with 5 randomly generated missing masks. We can find that MDGCN achieves notably

uperior results to the baseline models in most missing scenarios. For the METR-LA data, MDGCN performs better than the baseline
ethods by a large margin for all missing patterns and missing ratios. For the INRIX-SEA dataset, MDGCN achieves significant

mprovement in the imputation performance for missing patterns RM, TCM and SCM. For BM, MDGCN shows similarly competitive
erformance with BiLSTM. This indicates that MDGCN can provide more accurate and robust results than existing methods for

3 For distinction, BLSTM denotes the bidirectional recurrent layer in MDGCN and BiLSTM denotes the bidirectional recurrent baseline model.
10



Transportation Research Part C 143 (2022) 103826Y. Liang et al.
Fig. 3. Performance comparison for different missing patterns on METR-LA data. Results averaged over 3 independent runs.
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Fig. 4. Performance comparison for different missing patterns on INRIX-SEA data. Results averaged over 3 independent runs. The results of DAE for SCM and
BM on INRIX-SEA data is presented separately in Appendix B.
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Fig. 5. The imputation result of the METR-LA data at 18:00 on 2012-05-24 using MDGCN.

diverse combinations of missing patterns and traffic data types. This is likely because our model can better leverage global and
local spatiotemporal information hidden in the complete traffic data. In our model, the temporal information is captured with
bidirectional recurrence, the spatial information with directed graph convolutions and the global spatiotemporal information with
an external memory network. We also take advantage of the graph structure estimation technique which effectively models spatial
dependencies evolving over time. It should be noted that on INRIX-SEA data, BiLSTM can slightly outperform MDGCN when the
missing pattern is BM or when the missing ratio reaches 80% for SCM. This can be potentially explained that when spatially adjacent
information is largely missing, it is difficult for GCNs to uncover meaningful spatial information and may even introduce noise to
the imputation results. The effect seems to be more pronounced in urban road networks (e.g., INTRIX-SEA) where the presence
of traffic signals can further disrupt the spatial dependencies between links. Fig. 5 provides an example of the imputation result
of MDGCN in different missing scenarios with the missing ratio of 50%. It can be seen that MDGCN is capable of reconstructing
missing values in all kinds of missing patterns.

Apart from our proposed model, we also examine the performance of baseline models in different missing patterns, which has
not been fully discussed in literature.

DAE: Although DAE performs well in RM, in the other missing patterns, its performance degrades tremendously with the increase
of missing ratios. The poor performance of DAE in the TCM scenario is potentially because DAE regards the data of each node as a
vector, which is suitable to repair isolated missing data points but fails to recover consecutive missing intervals. Additionally, DAE
barely leverages spatial information, thus performs poorly in SCE and BE scenarios.

BiLSTM: Although BiLSTM provides competitive results on INRIX-SEA data, it performs relatively poorly on METR-LA data. This
suggests that traffic conditions on urban road networks might display strong temporal dependencies, whereas traffic conditions on
freeway networks have lower regularities on time axis.

BRITS: BRITS provides better performance than BiLSTM for RM and TCM on both datasets, validating its effectiveness in
capturing feature correlations in these scenarios. However, it fails to provide competitive performance in other scenarios, suggesting
that it cannot work well for all missing patterns.

CNN-BiLSTM: The performance of CNN-BiLSTM is consistently inferior to BiLSTM. This indicates that CNNs cannot capture the
spatial dependencies on traffic networks effectively and even have a negative effect on the model performance.

GACN: The performance of GACN is relatively poor compared with other GCN-based approaches. This is potentially because it
uses a standard convolution layer to capture temporal dependencies, which can only leverage adjacent temporal information. In
addition, it only considers spatial dependencies between pre-defined adjacent nodes.

STGCN: STGCN performs well on METR-LA data, but it fails to provide satisfying results for INRIX-SEA data. This can be explained
that STGCN relies on a fixed adjacency matrix pre-determined by road connectivity to model spatial correlations and fails to capture
the true spatial dependencies in urban road networks.

GWNET: GWNET shows better performance than STGCN in all missing scenarios, validating the effectiveness of the adaptive
adjacency matrix learned through node embedding. Compared with GWNET, our proposed model performs better, suggesting that
our graph structure estimation technique can more effectively uncover nonlinear features from traffic data and model true and
dynamic spatial dependencies.

GMAN: Although GMAN was reported to outperform STGCN and GWNET in the task of traffic prediction, its performance is worse
than STGCN and GWNET in all kinds of missing patterns for both data sets. This indicates that although the attention mechanism
13
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Table 2
Performance (RMSE/MAPE) comparison of different variants of the external memory network on METR-LA data. Results averaged over 3 independent runs.

Model Missing ratios

20% 30% 40% 50% 60% 70% 80%

RM

-Memory 3.072/4.37 3.157/4.49 3.246/4.60 3.373/4.76 3.527/4.98 3.753/5.30 4.096/5.80
-Cluster 3.062/4.35 3.147/4.47 3.235/4.57 3.360/4.73 3.513/4.95 3.735/5.26 4.075/5.75
-Attn 3.056/4.33 3.142/4.45 3.229/4.55 3.355/4.72 3.507/4.94 3.729/5.25 4.066/5.75
MDGCN 3.033/4.30 3.120/4.42 3.207/4.52 3.331/4.68 3.483/4.90 3.700/5.20 4.035/5.69

TCM

-Memory 3.963/5.83 4.161/5.96 4.384/6.20 4.576/6.47 4.819/6.83 5.057/7.23 5.388/7.84
-Cluster 3.878/5.39 4.064/5.63 4.271/5.96 4.448/6.20 4.680/6.55 4.919/6.95 5.240/7.55
-Attn 3.858/5.38 4.041/5.64 4.245/5.98 4.420/6.23 4.651/6.59 4.890/6.98 5.218/7.58
MDGCN 3.828/5.36 4.024/5.61 4.231/5.94 4.410/6.19 4.643/6.55 4.879/6.94 5.212/7.55

SCM

-Memory 3.401/4.91 3.521/5.06 3.695/5.27 4.073/5.86 5.483/8.12 6.087/9.13 6.419/9.83
-Cluster 3.394/4.85 3.513/5.00 3.683/5.20 4.050/5.76 5.330/7.64 5.873/8.45 6.194/9.10
-Attn 3.380/4.87 3.500/5.02 3.672/5.23 4.027/5.77 5.209/7.47 5.806/8.46 6.189/9.24
MDGCN 3.379/4.83 3.500/4.97 3.671/5.18 4.023/5.69 5.205/7.36 5.826/8.38 6.195/9.12

BM

-Memory 6.253/9.49 6.347/9.64 6.592/10.13 6.833/10.75 7.231/11.73 7.289/11.84 7.333/11.90
-Cluster 6.222/9.38 6.296/9.52 6.521/9.96 6.776/10.63 7.150/11.62 7.175/11.64 7.243/11.73
-Attn 6.109/9.03 6.172/9.17 6.409/9.59 6.645/10.18 6.987/11.02 7.067/11.26 7.148/11.40
MDGCN 6.119/9.01 6.173/9.13 6.414/9.56 6.660/10.13 7.001/10.92 7.072/11.10 7.132/11.20

is capable of modeling spatiotemporal dependencies of complete traffic data, it may not be adequate to provide robust results for
incomplete and heterogeneous traffic data.

In summary, none of the baseline models can provide competitive results for all missing patterns in both freeway and urban
oad networks. DAE and BRITS are not competitive for spatially correlated missing patterns whereas STGCN cannot achieve superior
esults when missing values are temporally correlated. For different data types, BiLSTM and CNN-BiLSTM perform relatively poorly
or freeway networks, whereas existing GCN-based models, including GACN, STGCN, GWNET and GMAN, do not provide competitive
esults for urban road networks. Relative to the baseline, our proposed model achieves high accuracy across different missing
cenarios for both freeway and urban road networks. This validates the robustness of our proposed model in capturing both global
nd local spatiotemporal dependencies with limited observed data across different scenarios.

.2. Effect of external memory network

There are two main components of the external memory network: first, different nodes are clustered to several groups according
o the pre-defined adjacency matrix to avoid information sharing between unrelated nodes; second, we use an attention mechanism to
oftly match each node to different clusters. To verify the effectiveness of the external memory network and its different components,
e implement three variants of DMGCN on METR-LA data for ablation tests: one drops the entire external memory network and

he other two employed a simplified version of the external memory network:

• External memory network (−𝑀𝑒𝑚𝑜𝑟𝑦): without the external memory network, the variant model only utilizes temporal
information with the BLSTM layer and spatial information with the DDGCN layer.

• Spectral clustering (−𝐶𝑙𝑢𝑠𝑡𝑒𝑟): without spectral clustering, each node is not assigned with a pre-defined cluster category.
Each node is matched with different clusters using only the attention network.

• Attention mechanism (−𝐴𝑡𝑡𝑛): without the attention mechanism, we use the representation of the corresponding category of
each node to represent the global spatiotemporal information.

Table 2 displays the performance comparison of our proposed model and the three variants of MDGCN. To evaluate whether
the improvement brought by the external memory network is statistically significant, we conduct a 𝑡-test based on 6 repetitive
xperiments and the result can be found in Appendix C. It is found that the external memory network contributes to the model
erformance for all missing patterns and missing ratios significantly. The improvement brought by the memory network is obvious
or TCM and BM with all missing ratios. This indicates that the memory network can effectively capture shareable spatiotemporal
nformation across different nodes. In addition, the memory network can also store long-term temporal information, which is
eneficial to the imputation of temporal correlated missing patterns. For SCM, the contribution of the external memory network
s large when the missing ratio is high. This is potentially because graph convolutions do not work well when spatially adjacent
nformation is largely missing, and the memory network can utilize spatial information from different time slots to enhance the
mputation performance. Removing either spectral clustering or the attention mechanism leads to worse performance for most
issing scenarios, validating the importance of both components. Between the two, spectral clustering has a greater impact on
ifferent missing patterns. For BM, the variant model with only spectral clustering even achieves slightly better performance than
DGCN in most scenarios. This suggests that it is necessary to consider the pattern difference across different nodes for knowledge
14
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Table 3
Performance (RMSE/MAPE) Comparison of Different Adjacency Matrix Configurations on METR-LA data. Results averaged over 3 independent runs.

Model Missing ratios

20% 30% 40% 50% 60% 70% 80%

RM

Fix-only 3.102/4.41 3.191/4.53 3.283/4.64 3.418/4.81 3.582/5.05 3.822/5.38 4.194/5.92
Fix-SAAM 3.090/4.39 3.176/4.50 3.269/4.62 3.397/4.78 3.554/5.01 3.785/5.34 4.131/5.87
GAT 3.473/5.00 3.546/5.10 3.631/5.20 3.759/5.35 3.917/5.57 4.160/5.89 4.571/6.48
Dynamic-only 3.108/4.41 3.195/4.53 3.285/4.64 3.410/4.80 3.565/5.03 3.785/5.33 4.119/5.83
Fix-dynamic 3.033/4.30 3.120/4.42 3.207/4.52 3.331/4.68 3.483/4.90 3.700/5.20 4.035/5.69

TCM

Fix-only 4.154/5.86 4.447/6.29 4.745/6.78 4.992/7.19 5.254/7.61 5.510/8.10 5.850/8.79
Fix-SAAM 3.970/5.51 4.188/5.79 4.431/6.18 4.635/6.49 4.887/6.87 5.139/7.31 5.486/7.95
GAT 4.832/6.93 5.194/7.52 5.501/8.11 5.779/8.61 6.017/9.02 6.262/9.55 6.553/10.20
Dynamic-only 3.968/5.54 4.135/5.77 4.350/6.12 4.534/6.38 4.746/6.71 4.980/7.12 5.304/7.73
Fix-dynamic 3.828/5.41 4.027/5.65 4.231/5.98 4.410/6.24 4.643/6.59 4.879/6.99 5.212/7.61

SCM

Fix-only 3.420/4.96 3.545/5.12 3.719/5.34 4.120/6.00 5.773/8.78 6.570/10.42 6.903/11.14
Fix-SAAM 3.383/4.86 3.502/5.01 3.675/5.22 4.053/5.80 5.421/7.93 6.101/9.06 6.482/9.90
GAT 3.665/5.37 3.782/5.51 3.958/5.73 4.368/6.38 5.989/9.21 6.793/10.87 7.177/11.86
Dynamic-only 3.483/5.02 3.609/5.17 3.783/5.39 4.202/6.00 5.350/7.66 5.878/8.54 6.180/9.19
Fix-dynamic 3.379/4.83 3.500/4.97 3.671/5.18 4.023/5.69 5.205/7.36 5.826/8.38 6.195/9.12

BM

Fix-only 6.662/10.41 6.730/10.55 6.947/11.01 7.262/11.85 7.707/13.18 7.836/13.49 7.948/13.72
Fix-SAAM 6.264/9.54 6.359/9.67 6.559/10.08 6.781/10.68 7.244/11.93 7.374/12.22 7.465/12.37
GAT 6.962/11.14 7.044/11.28 7.327/12.02 7.527/12.71 8.060/14.23 8.186/14.43 8.214/14.45
Dynamic-only 6.350/9.63 6.394/9.69 6.625/10.08 6.835/10.67 7.108/11.40 7.170/11.58 7.222/11.64
Fix-dynamic 6.119/9.01 6.173/9.13 6.414/9.56 6.660/10.13 7.001/10.92 7.072/11.10 7.132/11.20

6.3. Effect of dynamic adjacency matrices

Recent studies have proposed different techniques to model the true and dynamic spatial dependencies across traffic networks,
hich can be mainly divided into two streams: one is to learn an adaptive adjacency matrix together with the model (Wu et al.,
019; Ye et al., 2020), and the other is to employ attention mechanisms to capture spatial dependencies evolving with time (Zheng
t al., 2020; Ye et al., 2021). However, most of these approaches are developed for prediction tasks, and it is unknown whether
hey can properly handle the incomplete and heterogeneous data for imputation tasks. To compare the performance of our proposed
raph structure estimation technique with existing approaches, we use the self-adaptive adjacency matrix (𝑆𝐴𝐴𝑀) proposed by Wu

et al. (2019) as a representative of the first stream of studies, and the Graph attention networks (𝐺𝐴𝑇 ) in Ye et al. (2021) as
representative of the second stream of studies. In addition, we conduct experiments using different variants of our proposed

djacency matrix configurations: fix-only ([𝑨𝑓 ,𝑨𝑏]), dynamic-only ([𝑨̃𝑑 ]) and fix-dynamic ([𝑨𝑓 ,𝑨𝑏, 𝑨̃𝑑 ]). For fair comparison, we
se the same structure of our proposed model and only replace the graph convolution layer with different alternatives.

Table 3 shows the performance comparison of different adjacency matrices on the METR-LA data. It can be found that the
ix-dynamic model works better than the fix-only model under all missing scenarios. For all missing patterns, the impact of the
ynamic adjacency matrices becomes greater as the missing ratio gets higher, suggesting that dynamic adjacency matrices play a
ore important role for higher missing ratios. The contribution brought by the dynamic adjacency matrices is especially significant

or correlated missing patterns: without 𝐴𝑑 , the RMSE increases by at most 13.2% for TCM, 12.8% for SCM and 11.4% for BM. We
lso find that the dynamic-only model works better than the fix-only model under most scenarios. This suggests that our proposed
raph structure estimation technique can effectively uncover the true and dynamic spatial dependencies even when no pre-defined
raph structure is provided. For SCM, the dynamic-only model performs even better than the fix-dynamic model when the missing
atio is 80%. This is potentially because when spatial information is largely missing, the fix adjacency matrices cannot pass useful
essages to neighborhood nodes and even introduce some noise information. Compared with SAAM and GAT, our proposed graph

tructure estimation technique also performs best under all missing scenarios. This is potentially because the feed-forward network
an effectively uncover nonlinear features from traffic data and model true and dynamic spatial dependencies, while SAAM fails to
irectly leverage real-time traffic information and does not change over time. GAT performs even worse than the fix-only model
n our application. Recall that among our baselines, GMAN (Zheng et al., 2020) and GACN (Ye et al., 2021), which also employ
ttention mechanisms to capture spatial dependencies across the traffic network, do not perform as well as the other GCN-based
odels in our specific application. This indicates that although the attention mechanism is capable of modeling spatiotemporal
ependencies of complete traffic data, it might fail to provide robust results for incomplete and heterogeneous traffic data.

To intuitively illustrate the dynamic adjacency matrices learned from the DDGCN layer, we visualize the learned transition
eights between sensor 𝐴 and the other sensors in METR-LA data across different time in Fig. 6. Each colored dot represents a

ensor, and the lighter the color of a dot is, the higher the transition weight between 𝐴 and the sensor is. Recall that transition
eights represent the diffusion likelihood between sensors and higher transition weights indicate stronger spatial correlations. As
isplayed in Fig. 6, spatial correlations are not strictly determined by distance. For example, at 20:00, sensor 𝐵 which is not adjacent
o 𝐴 displays high dependencies with sensor 𝐴. Comparing the transition weights across different time, we can find that sensor 𝐵
as different correlations with 𝐴 at different time, indicating that the spatial dependencies are dynamically changing over time.
15

his confirms the necessity of capturing dynamic spatial dependencies.
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Fig. 6. Transition weights between sensor 𝐴 and the other sensors in METR-LA data from 18:00 to 22:00 on 2012-05-24. Sensor B is marked as an example to
highlight the dynamic transition weights between sensors A and B.

Table 4
Computation cost of GCN-based models on METR-LA data.
Model Time Space

Training (s/epoch) Inference (s) RAM used (GB) GPU used (GB)

GACN 17.78 5.24 2.77 8.65
STGCN 4.57 1.43 2.80 1.38
GWNET 18.39 1.67 2.81 1.79
GMAN 34.09 5.04 2.79 10.06
MDGCN 16.81 4.71 2.88 3.71

6.4. Computation cost

In this section, we compare the time and space cost of MDGCN with GCN-based baselines, including GACN, STGCN, Graph
WaveNet and GMAN. The results are displayed in Table 4. The inference time is measured as the total time cost on the test set. The
space cost is measured as the RAM and GPU usage for running one epoch. It is shown that STGCN is the most efficient for both
training and inference due to its simple architecture. Our proposed model runs two times faster than GMAN and similar to GACN and
GWNET. For space consumption, the RAM usage of different models are similar, while the GPU usage of GACN and GMAN is much
larger than the other models. This is potentially because they both employed attention mechanisms to capture spatial dependencies,
which require node-to-node computation and consume much GPU space. These results show that our proposed model can achieve
more accurate imputation performance with reasonable computation cost.

6.5. Experiments with and without complete training data

In prior sections, we use complete historical data for model training. Note that the missing ratio of traffic data can often vary
over time. For example, when new traffic sensors are installed, the data is close to complete, but its missing ratio may increase as
the sensors degrade over time. In such cases, we may take advantage of the (near)complete data in the beginning to train a deep
learning model for imputation later on. However, it is not always possible to obtain sufficient complete data to train deep learning
models. In cases when traffic sensors are damaged for a long period (e.g., several months) or few vehicles are equipped with GPS
devices, only incomplete traffic data is available. In this section, we compare the performance of our proposed model with two
selected baseline models under different data conditions, based on whether complete training data is available or not.

In recent years, tensor factorization has emerged as a popular approach to traffic data imputation. Generally, tensor factorization
methods assume that the multivariate and multidimensional time series can be characterized by a low-rank structure with shared
latent factors (Chen and Sun, 2021). It is expected that, when sufficient complete data is provided, deep learning models have a
clear advantage over tensor factorization methods: first, they can capture the complex spatiotemporal dependencies hidden in the
road network, and second, they can be pre-trained for online application. In cases with only incomplete data, tensor factorization
models may offer more robust results, as they directly learn the low-rank structure from the incomplete data without the need for
separate model training. To compare the performance of our proposed model and other methods under different data conditions, we
use GWNET (Wu et al., 2019) as a representative of baseline deep learning models, and BGCP (Chen et al., 2019) as an example of
tensor factorization models. Experiments are conducted on the METR-LA dataset for different missing patterns with missing ratios
ranging from 20% to 60%.

Because deep learning and tensor factorization methods are fitted in very different ways, we design our experiment settings as
follows. When there is complete training data, we train MDGCN and GWNET using the method described in Section 5.4. For BGCP,
the entire data set (concatenated training, validation and test set) is used as input and the recovery results are generated at once.
When only incomplete data is provided, we assume the entire data set has uniform missing distributions. For example, in the RM
60% scenario, both the training set and the test set have 60% randomly missing values. For the training of MDGCN and GWNET,
the incomplete training set with missing values is fed to Alg. 1 to generate training samples. It should be noted that the missing
16

values are kept as unobserved during the whole training process, so that MDGCN can only use the observed information for model
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Table 5
Performance (RMSE/MAPE) comparison of BGCP, GWNET and BGCP with complete or incomplete training data on METR-LA dataset. Results averaged over 3
independent runs.

Missing ratio Complete training data Incomplete training data

20% 40% 60% 20% 40% 60%

RM
BGCP 5.497/8.69 5.559/8.89 5.640/8.99 5.449/8.59 5.447/8.66 5.462/8.65
GWNET 3.673/5.25 3.897/5.57 4.266/6.10 3.667/5.25 3.911/5.59 4.335/6.28
MDGCN 3.033/4.30 3.207/4.52 3.483/4.90 3.161/4.51 3.294/4.70 3.645/5.21

TCM
BGCP 5.669/8.95 5.825/9.29 5.974/9.62 5.618/8.80 5.800/9.29 6.031/9.69
GWNET 4.430/6.32 4.752/6.82 5.208/7.50 4.521/6.38 4.927/7.15 5.470/8.18
MDGCN 3.828/5.41 4.231/5.98 4.643/6.59 3.921/5.42 4.424/6.17 5.077/7.31

SCM
BGCP 5.441/8.53 5.698/9.02 6.928/11.28 5.410/8.49 5.636/8.93 7.410/12.87
GWNET 4.103/5.90 4.527/6.47 5.876/8.78 4.123/5.98 4.589/6.71 7.980/12.84
MDGCN 3.379/4.83 3.671/5.18 5.205/7.36 3.304/4.69 3.592/5.05 8.619/12.81

BM
BGCP 6.419/9.80 7.382/11.60 8.834/14.02 6.550/9.98 7.376/11.64 9.011/15.76
GWNET 6.669/10.38 7.002/11.07 7.459/12.30 6.765/10.54 7.235/11.39 9.428/16.31
MDGCN 6.119/9.01 6.414/9.56 7.001/10.92 6.305/9.55 6.557/9.86 9.355/16.37

training. For BGCP, the entire data set with the same missing distribution is used as input. The tensor rank for the BGCP model is
set as 40 for METR-LA data and 45 for INRIX-SEA data through experiments.

Table 5 displays the imputation performance of BGCP, GWNET and MDGCN with complete or incomplete training data. It can
e found that when complete training data is provided, MDGCN outperforms BGCP and GWNET by a large margin in all kinds of
issing patterns and missing ratios, indicating the effectiveness of our proposed model with sufficient training data. In the absence of

omplete training data, MDGCN still achieves notably superior performance to the two baseline models in the RM and TCM patterns
or all missing ratios. In SCM and BM, MDGCN performs better than GWNET and BGCP with low missing ratios, whereas BGCP
hows slightly better performance when the missing ratio reaches 60%. This result shows that our proposed model can still provide
ompetitive imputation performance in most scenarios with only incomplete training data, while tensor factorization methods show
dvantage in dealing with incomplete training data with complex missing patterns and high missing ratios. This is reasonable as deep
earning models are more data-driven while tensor factorization does not require a large amount of high-quality training data. In
ummary, deep learning models and tensor factorization models are applicable to different cases: deep learning models can perform
etter when complete training data is provided or when the missing ratio is relatively low, whereas tensor factorization methods
ay be preferred in complex missing scenarios with high missing ratios.

. Conclusion

Missing values in traffic data are an inevitable and important problem for intelligent transportation systems. Recent research
ave employed GNNs for multivariate time series imputation and achieved state-of-the-art performance. Despite these studies,
here exist two important limitations: first, existing approaches cannot directly leverage global spatiotemporal information from
ifferent nodes at different time; second, these research mostly do not properly handle dynamic spatial dependencies and correlated
issing patterns of traffic data. To fill these research gaps, this paper introduces a novel deep learning-based framework called
DGCN to reconstruct missing traffic data. The proposed method comprises several spatiotemporal blocks to capture spatiotemporal

nformation coherently. Each block contains a bidirectional recurrent layer to capture temporal correlations and a diffusion graph
onvolution layer to capture spatial correlations. Moreover, we introduce an external memory network to store and share global
patiotemporal information across different nodes. In addition, a graph structure estimation technique is proposed to learn dynamic
patial dependencies directly from traffic data. Extensive experiments are conducted to compare our proposed model with several
tate-of-the-art deep learning models in four types of missing patterns using two public traffic speed datasets. The results show that
ur proposed model achieves superior performance to existing methods in different missing patterns and provides robust results
ith a wide range of missing ratios. Further ablation analysis validates the contribution of our proposed external memory network
nd graph structure estimation technique. In addition, we compare our proposed model with a tensor factorization method under
ifferent training data availability. It is found that the our model significantly outperforms the tensor factorization method with
igh-quality training data whereas the tensor factorization method is more suitable to deal with incomplete training data with high
issing ratios.

There are several directions for future works. First, for complex missing scenarios without sufficient training data, our model
eeds further improvement. It would be meaningful to incorporate transfer learning techniques in our proposed method, so that we
an leverage models trained in data-rich environments for scenarios without adequate training data. Second, the spectral clustering
ethod currently used in our model requires the historical traffic data of nodes and might not work well when the missing ratio is
igh. A more robust clustering method can be introduced to enhance the performance of our model in the case of incomplete data
ith high missing ratios. A potential method is to use a Bayesian approach, where the geographic proximity is the prior and the

raffic pattern similarity is the posterior. When traffic data is limited, we rely more on the geographic proximity; when the traffic
ata is abundant, we rely more on the traffic pattern similarity. Third, existing imputation researches are usually based on traffic
ata from either loop sensors or GPS probes. Loop sensors provide traffic data with high sampling rates yet limited spatial coverage,
hereas GPS probes cover a wide spatial range with low temporal resolutions. By considering traffic data from GPS probes and loop

ensors simultaneously, it is possible to recover traffic data with high spatial and temporal resolutions.
17
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Fig. B.7. The performance of DAE for SCM and BM with INRIX-SEA data.
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Appendix A. Methods for missing pattern generation

Suppose the missing ratio is 𝑟 and the imputation time window is [1, 𝑇 ], we generate the missing patterns using the following
methods:

RM: A random integer 𝑎 within range [0, 1) is generated for each data point. If 𝑎 < 𝑟, the data point is masked.
TCM: For each node in the traffic network, randomly choose a time point 𝑡 within [1, 𝑇 ]. If 𝑡 ≤ 𝑇 − ⌊𝑇 ∗ 𝑟⌋, data points within

[𝑡, 𝑡 + ⌊𝑇 ∗ 𝑟⌋] are masked. If not, data points within range [1, ⌊𝑇 ∗ 𝑟⌋ − (𝑇 − 𝑡)) and [𝑡, 𝑇 ] are masked.
SCM: For each time slot in the imputation window, randomly choose a node 𝑣 in the traffic network. If the traffic network

contains a set of sensors, the ⌊𝑁 ∗ 𝑟⌋ sensors closest to 𝑣 are searched and masked. If the traffic network contains a set of road links,
we use the Breadth-first Search Algorithm to iterate over the road network from 𝑣 and the first ⌊𝑁 ∗ 𝑟⌋ road links to be discovered
are masked.

BM: BM contains missing data points which are both temporally and spatially correlated. We use Alg. 2 to generate the BM
pattern.
Algorithm 2: Generating the BM pattern on a data matrix 𝑆
Input : missing ratio 𝑟, imputation window [1, 𝑇 ], the input data matrix 𝑆
𝑖 = 1;
while 𝑖 ≤ 𝑇 do

Randomly generate an integer 𝑎 within range [1, 𝑇 − 𝑖];
Randomly choose a node 𝑣 from the traffic network;
Select the ⌊𝑁 ∗ 𝑟⌋ closest nodes 𝑁𝑣 to 𝑣;
Mask the data points of 𝑁𝑣 within time range[𝑖, 𝑖 + 𝑎] in 𝑆;
𝑖 = 𝑖 + 𝑎;

end

Appendix B. The imputation performance of DAE for SCM and BM with INRIX-SEA data

The imputation performance of DAE in SCM and BM patterns for INRIX-SEA data is displayed in Fig. B.7.

Appendix C. The 𝒕-test result of the contribution of the external memory networks

To verify the contribution of our proposed external memory network, we repeat the experiments with and without the external
memory network six times and use a 𝑡-test to evaluate whether the performance improvement provided by the external memory
network is significant. The result is displayed in Table C.6. It can be found that the external memory network contributes to the
model performance significantly for all missing patterns and missing ratios.
18
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Table C.6
𝑡-test result of performance improvement brought by the external memory network on METR-LA data.

Missing patterns Missing ratios

20% 30% 40% 50% 60% 70% 80%

RM

RMSE
Improvement % 0.92 0.81 0.85 0.87 0.87 1.03 1.11
𝑡-value −2.279 −2.024 −2.091 −2.023 −1.920 −2.100 −1.924
𝑝-value 0.023** 0.035* 0.032** 0.035** 0.042** 0.039** 0.048**

MAPE
Improvement % 1.23 1.13 1.18 1.16 1.14 1.20 1.26
𝑡-value −2.295 −2.035 −2.119 −2.024 −1.948 −1.924 −1.753
𝑝-value 0.022** 0.035** 0.030** 0.035** 0.040** 0.042** 0.055*

TCM

RMSE
Improvement % 2.92 2.89 3.14 3.34 3.23 3.11 3.02
𝑡-value −2.620 −2.244 −2.142 −2.120 −2.103 −2.125 −2.194
𝑝-value 0.013** 0.024** 0.029** 0.030** 0.031** 0.030** 0.026**

MAPE
Improvement % 3.22 3.59 4.00 4.32 4.12 3.96 3.73
𝑡-value −2.693 −2.429 −2.271 −2.238 −2.187 −2.132 −2.016
𝑝-value 0.011** 0.018** 0.023** 0.025** 0.027** 0.029** 0.036**

SCM

RMSE
Improvement % 0.57 0.56 0.55 0.99 4.97 4.69 3.69
𝑡-value −3.370 −3.824 −3.641 −3.276 −4.436 −3.938 −3.068
𝑝-value 0.004*** 0.002*** 0.002*** 0.004*** 0.001*** 0.001*** 0.006***

MAPE
Improvement % 1.57 1.55 1.55 2.46 8.65 8.38 7.00
𝑡-value −5.714 −5.596 −5.212 −4.028 −3.902 −3.510 −2.826
𝑝-value 0.000*** 0.000*** 0.000*** 0.001*** 0.001*** 0.003*** 0.009***

BM

RMSE
Improvement % 2.16 2.74 2.70 2.52 3.17 2.98 2.70
𝑡-value −5.194 −7.767 −7.579 −5.243 −6.172 −5.868 −7.143
𝑝-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

MAPE
Improvement % 5.11 5.30 5.63 5.76 6.71 6.27 5.85
𝑡-value −6.850 −8.151 −7.472 −7.267 −7.290 −5.919 −5.894
𝑝-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

*Represent the confidence level at 90%.
**Represent the confidence level at 95%.
***Represent the confidence level at 99%.
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