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Abstract. Forecasting short-term ridership of different origin-destination pairs (i.e., OD
matrix) is crucial to the real-time operation of a metro system. However, this problem is
notoriously difficult due to the large-scale, high-dimensional, noisy, and highly skewed
nature of OD matrices. In this paper, we address the short-term OD matrix forecasting
problem by estimating a low-rank high-order vector autoregression (VAR) model. We
reconstruct this problem as a data-driven reduced-order regression model and estimate it
using dynamic mode decomposition (DMD). The VAR coefficients estimated by DMD are
the best-fit (in terms of Frobenius norm) linear operator for the rank-reduced full-size data.
To address the practical issue that metro OD matrices cannot be observed in real time, we
use the boarding demand to replace the unavailable OD matrices. Moreover, we consider
the time-evolving feature of metro systems and improve the forecast by exponentially
reducing the weights for historical data. A tailored online update algorithm is then devel-
oped for the high-order weighted DMD model (HW-DMD) to update the model coeffi-
cients at a daily level, without storing historical data or retraining. Experiments on data
from two large-scale metro systems show that the proposed HW-DMD is robust to noisy
and sparse data, and significantly outperforms baseline models in forecasting both OD
matrices and boarding flow. The online update algorithm also shows consistent accuracy
over a long time, allowing us to maintain an HW-DMDmodel at much low costs.

Funding: This work was supported by the Natural Sciences and Engineering Research Council of Can-
ada, Mitacs, exo.quebec (https://exo.quebec/en), and the Canada Foundation for Innovation.

Keywords: origin-destination matrices • ridership forecasting • dynamic mode decomposition • public transport systems •
high-dimensional time series • time-evolving system

1. Introduction
The metro is a green and efficient travel mode that
plays an ever-important role in urban transportation.
An accurate real-time ridership/demand forecast is
crucial to the efficiency and reliability of metro sys-
tems. With the wide application of smart card systems
and diverse types of sensors, forecasting real-time
metro ridership has become an emerging research
question in recent years. Existing research mainly
focuses on forecasting the short-term (e.g., 15 or 30
minutes) boarding or alighting ridership at metro sta-
tions, such as Wei and Chen (2012), Sun, Leng, and
Guan (2015), Li et al. (2017), Chen et al. (2019), Liu,
Liu, and Jia (2019), and Zhang et al. (2021b). In con-
trast, forecasting the short-term ridership at origin-
destination (OD) pairs of a metro system receives little
attention. The ridership among all OD pairs of a metro
system can be organized into a matrix. For simplicity,

an “ODmatrix” in this paper refers to such a ridership
matrix at a certain (short) time interval.

Forecasting metro OD matrices has much broader
applications than the station-level ridership forecast.
For example, by assigning OD matrices to a metro
network, we can predict and thus regulate the crowd-
edness of each train. The station-level boarding/
alighting flow also can be calculated as the row and
column sums of the OD matrix. However, the real-
time forecast of metro OD matrices is extremely diffi-
cult for the following reasons. (1) The first challenge is
the high dimensionality. The number of OD pairs of a
metro system is the square of the number of stations,
often tens of thousands in practice. (2) Short-term OD
matrices of a metro system are often sparse, and the
ridership/flow distribution within an OD matrix is
highly skewed (see, e.g., Figure 3). (3) Unlike the board-
ing or alighting flow, a metro system’s OD matrices
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cannot be obtained in real time (delayed data availabil-
ity), because an OD matrix only becomes available
after all the trips belonging to the OD matrix have
reached their destinations. Lastly, (4) the complex
dynamics of a metro system are time-evolving; a well-
tuned model may have a short “shelf life” and has
expensive retrain/retune costs in long-term mainte-
nance. Although a few studies tried to forecast the real-
time metro OD matrices by matrix factorization meth-
ods (Gong et al. 2018, 2022) or deep learning models
(Toqué et al. 2016, Shen et al. 2020, Zhang et al. 2021c),
no existing solution overcomes all four challenges.

This paper utilizes dynamic mode decomposition
(DMD) (Schmid 2010)—a recent advance in the fluid
dynamics community—to address the aforemen-
tioned challenges in a real-time metro OD matrix fore-
casting problem. DMD is a dimensionality reduction
technique that extracts dominating dynamics (modes)
from a sequence of high-dimensional vectors. The
uniqueness of DMD is that it identifies the best-fit (in
terms of Frobenius norm) linear operator that advan-
ces a high-dimensional vector sequence forward in
time (Tu et al. 2014). We extend the original DMD
model by a high-order vector autoregression to incor-
porate long-term temporal correlations. In dealing
with the delayed data availability problem, we replace
the latest OD matrices, which are unavailable, with
snapshots of boarding flow. We also consider the
time-evolving dynamics and introduce a forgetting
ratio to reduce the weights of past data exponentially.
We name the proposed model high-order weighted
dynamic mode decomposition (HW-DMD). Moreover, we
develop a tailored online update algorithm that
updates an HW-DMD’s coefficients daily without
storing historical data or retraining the model, which
greatly reduces the model maintenance costs for long-
term implementations. Finally, the proposed model is
tested on a Guangzhou metro data set with 159 sta-
tions and a Hangzhou metro data set with 80 stations.
Our experiments show that HW-DMD can excellently
handle the sparse, skewed, and noisy OD data and
significantly outperforms baseline models in forecast-
ing both the OD matrices and the boarding flow. The
online update algorithm also shows consistent accu-
racy in updating an HW-DMD model over a long
period. Although the online HW-DMD model is
applied to the metro OD matrix forecasting problem,
it can be readily applied to general (high-dimensional)
traffic flow forecast problems, such as in recent stud-
ies about DMD-based traffic flow forecasting (Avila
and Mezić 2020, Yu et al. 2021). The main contribu-
tions of this paper are as follows:

• This paper proposes an HW-DMD model that
addresses various difficulties of real-time metro OD
matrix forecasting. Experiments show that the forecast of
HW-DMD is significantly better than existingmodels.

• The time-evolving dynamics of a transportation
system and the maintenance/update of a forecasting
model are often ignored in the literature. This paper
considers the time-evolving feature of a metro system
by reducing the weights for past data and shows
improved performance. An online update algorithm is
proposed to reduce the long-term maintenance cost of
the HW-DMDmodel in a time-evolving metro system.

• We propose a DMD-based estimation and online
update algorithm for large-scale high-order vector
autoregression models with external covariates. The
DMD-based estimation produces a best-fit linear oper-
ator for rank-reduced full-size data and is particularly
useful for the forecast of high-dimensional data with
low-rank properties.

The remainder of this paper is organized as follows.
We review related work on short-term OD matrix
forecasting in Section 2. Next, a description of the
metro OD matrix forecasting problem is presented in
Section 3. Section 4 briefly introduces the DMD algo-
rithm, which serves as the base for the proposed
HW-DMD model. Section 5 is the core part of this
paper, where the model specification, estimation, and
the online update method for HW-DMD are elabo-
rated. In Section 6, we conduct numerical experiments
on the two metro data sets. Conclusions and future
directions are summarized in Section 7.

2. Related Work
In the literature, only a few studies have explored the
real-time OD matrix forecasting problem for a “metro”
system. Therefore, we extend the range to OD demand
forecasting for general road transportation modes, such
as the ride-hailing system and the highway tolling sys-
tem. Note that, for a ride-hailing system, the origins
and destinations are often defined as zones on a grid.

Matrix/tensor factorization is an effective method to
tackle the high-dimensionality problem of OD matrix
forecasting. For example, Ren and Xie (2017) applied
canonical polyadic (CP) decomposition to an origin ×
destination × vehicle_type × time tensor from highway
tolling data. Time series models were then built on the
latent temporal matrix to forecast OD matrices. Dai,
Sun, and Xu (2018) and Liu et al. (2020) used principal
component analysis (PCA) to reduce the dimensionality
of OD data and applied several machine learning mod-
els to the reduced data for OD flow forecasting. Gong
et al. (2022) developed a matrix factorization model to
forecast the OD matrices of a metro system. Their work
highlights a solution to the delayed data availability
problem and various spatial, and temporal regulariza-
tion techniques are introduced to improve the forecast.
In summary, the matrix/tensor factorization-based OD
matrix forecasting consists of two components: (1) a
dimensionality reduction by factorization and (2) a fore-
casting model applied to the reduced data.
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Deep learning is another mainstream method for
OD matrix forecasting. In an early study, Toqué et al.
(2016) used long short-term memory (LSTM) networks
to forecast the OD matrices of a transit network. They
only applied the model to selected high-flow OD pairs
because of the high dimensionality and sparsity prob-
lems. Convolutional neural networks (CNN) and
graph convolutional networks (GNN) are two deep-
learning models that greatly reduce the model size
compared with a fully connected neural network.
Recently, using CNN/GCN to capture spatial correla-
tions and LSTM to capture temporal correlations
started to become the “standard configuration” for
deep-learning-based OD matrix forecasting. For exam-
ple, Chu, Lam, and Li (2020) used multiscale convolu-
tional LSTM to forecast the real-time taxi OD demand,
and Wang et al. (2019b, 2020) used multitask learning
to improve the OD flow forecast of GCN and LSTM
networks. A large body of literature focused on better
utilizing the spatial/semantic correlations by optimiz-
ing the GNN structure or incorporating side informa-
tion, such as the local spatial context used by Liu et al.
(2019), the spatio-temporal encoder-decoder residual
multigraph convolutional network (ST-ED-RMGC)
proposed by Ke et al. (2021), and the dynamic node-
edge attention network (DNEAT) developed by Zhang
et al. (2021a). Some studies combined deep-learning
models with other models to complement each other.
In this direction, Xiong et al. (2020) combined GCN
with a Kalman filter to forecast the OD matrices of a
turnpike network. Shen et al. (2020) mixed CNN with
a gravity model to forecast OD matrices of a metro
system. Hu et al. (2020) considered the travel time
betweenODpairs as a stochastic variable and developed
a stochastic OD matrix forecasting model based on ten-
sor factorization and GCN. Noursalehi, Koutsopoulos,
and Zhao (2021) used discrete wavelet transform to
decompose OD matrices into frequency domain; the
outputs were fed into CNN and convolutional-LSTM
networks for forecasting.

The performances of deep-learning models are
often impaired by the noise in sparse metro OD matri-
ces. To reduce the impact of the noise, Zhang et al.
(2019b, 2021c) developed a metric called OD attraction
degree (ODAD) to mask insignificant OD pairs. Zhang
et al. (2019b) showed that masking near-zero OD pairs
improves the forecasting accuracy of an LSTM. Based
on ODAD, Zhang et al. (2021c) developed a channel-
wise attentive split-CNN (CAS-CNN) model for
metro OD matrix forecasting. Another merit of this
work is that they considered the delayed data avail-
ability problem.

In summary, matrix/tensor factorization, CNN, and
GCN all aim to reduce model size while maintaining
spatial/temporal correlations/dependencies. The HW-
DMD model proposed in this paper belongs to the

matrix factorization category. Although some ride-
hailing systemsmay not have the delayed data availabil-
ity problem, most research essentially omitted this
problem for simplicity. Particularly, RNN-based deep-
learning models can barely work without the most
recent OD matrices as inputs. In dealing with the
delayed data availability problem, existing solutions
(Xiong et al. 2020, Zhang et al. 2021c, Gong et al. 2022)
used alternative quantities (e.g., boarding ridership, link
flow) to compensate for the unavailableOD information.
We also adopt this approach in the proposedmodel.

3. Problem Description
Many modern metro systems record passengers’ entry
and exit information using smart cards. We thus
know the origin and destination stations, the start and
end time for every trip in such a system. Given a fixed
time interval (30 minutes in this paper), we denote by
ot,i,j the number of trips that depart from station i at
the tth interval to station j. We call ot,i,j an OD flow.
Next, we can describe the number of trips between
every OD pair in the system at the tth time interval by
an OD matrix

Ot �
ot,1,1 : : : ot,1,s
⋮ ⋱ ⋮

ot,s,1 : : : ot,s,s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R

s×s,

where s is the number of metro stations. The diagonal
elements of metro OD matrices are always zero. We
keep these zero elements because they have a negligi-
ble effect on the forecast. In our model, OD matrices
are organized in a vector form,

ft � vec(Ot) � [ot,1,1, : : : ,ot,s,1,ot,1,2,: : : ,ot,s,2,: : : ,ot,1,s , : : : ,ot,s,s]� ∈ R
n,

where n � s × s is the number of OD pairs. For conve-
nience, we refer to ft as an OD snapshot.

Note that OD snapshots are aggregated by the time
when passengers enter the system; the exit time might
be in a different time interval. Therefore, the true OD
snapshot for interval t can only be obtained after all
those passengers entered at interval t have reached
their destinations; it cannot be observed in real time
(i.e., the delayed data availability). In other words, we
often do not have access to ft when forecasting ft+1. In
contrast, the boarding (entering) flow—another impor-
tant quantity—is observable in real time. We denote
by bt,i the number of passengers entering station i at
interval t. In fact, we have bt,i �∑

jot,i,j. We define a
boarding snapshot as a vector bt � [bt,1,bt,2, : : : ,bt,s]�.

The OD matrices/flow forecasting problem is to
forecast future OD snapshots ft+1, ft+2, : : : , ft+L given a
sequence of available historical OD snapshots
f1, f2, : : : , ft and boarding snapshots b1,b2, : : : ,bt. The
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reason for using boarding snapshots is to compensate
for the delayed data availability problem of recent OD
snapshots.

4. Dynamic Mode Decomposition
Dynamic mode decomposition (DMD; Schmid 2010)
was developed by the fluid dynamics community to
extract dynamic features from high-dimensional data.
To better illustrate our forecasting model, we briefly
introduce DMD in this section.

Consider using a linear dynamical system fi ≈ Afi−1
for OD flow forecasting. Similar to many fluid prob-
lems, n is huge for an OD snapshot, and even storing
A ∈ R

n×n can be prohibitive. Therefore, DMD outputs
the (leading) eigenvalues and eigenvectors of A with-
out calculating the expensive A. The eigenvectors of
A are referred to as the DMD modes and have clear
physical meaning. Each DMD mode is associated
with an oscillation frequency and a decay/growth
rate determined by its eigenvalue. DMD is also con-
nected to Koopman theory and can model complex
nonlinear systems by constructing proper measure-
ments (Rowley et al. 2009). There are many variant
algorithms for DMD. We only present the exact DMD
proposed by Tu et al. (2014), which is closely related
to this paper.

We arrange OD snapshots into m-column matrices
Yi � [fi−m+1, fi−m+2, : : : , fi] ∈ R

n×m. Typically, m� n. The
linear dynamical system follows Yt ≈ AYt−1. The exact
DMD seeks the leading eigenvalues and eigenvectors
of the best-fit linear operator A by the following
procedure.

1. Compute the truncated singular value decomposi-
tion (SVD) of Yt−1 ≈UΣV�, where U ∈ R

n×r, Σ ∈ R
r×r,

and V ∈ R
m×r and r�m.

2. Instead of computing the full matrix A � YtY+
t−1≈ YtVΣ−1U�.1 We define a reduced matrix Ã �U�AU

≈U�YtVΣ−1 ∈ R
r×r. It can be proved that Ã and A have

the same nonzero leading eigenvalues (Tu et al. 2014).
3. Compute the eigenvalue decomposition ÃW �WΛ.

The entries of the diagonal matrix Λ are also the eigen-
values of the fullmatrixA.

4. The DMD modes (eigenvectors of A) can be
obtained byΦ � YtVΣ−1W.

Figure 1 shows the singular values of a 10-day-long
Yt−1 from the Guangzhou metro system. A few leading
singular values explain a significant portion of the var-
iance, confirming the low-rank feature of OD snapshot
data. The DMD-based model can thus greatly reduce
the dimensionality/complexity of such a dynamic sys-
tem. However, the exact DMD has some limitations
for the OD flow forecasting problem. First, the com-
plex temporal correlation of OD flow cannot be well
captured by a linear dynamical system. Moreover,
using the last OD snapshot is impractical since OD

snapshots cannot be observed in real time. To address
these problems, we propose our solution in the next
section.

5. High-Order Weighted Dynamic Mode
Decomposition

5.1. Model Specification
The forecasting formula of an exact DMD amounts to
a high-dimensional vector autoregression of order 1.
However, the latest OD snapshots are unknown at the
time of forecasting. Therefore, we use the two latest
snapshots of the boarding flow as a replacement. We
regard OD snapshots of three or more intervals ago as
available, because we find that more than 96% trips in
our data set are completed within one hour (two lags).
And we can use a high-order vector autoregression to
capture the long-term correlations in OD snapshots.
The forecasting model follows

fi ≈ At,1fi−q1 + At,2fi−q2 + : : : + At,hfi−qh + At,b1bi−1
+ At,b2bi−2 ∀ i ∈ {qh + 1, qh + 2, : : : , t}, (1)

where time lags for OD snapshots are positive inte-
gers satisfying 3 ≤ q1 < : : : < qh < t. Note that coeffi-
cient matrices At,1, : : : ,At,h ∈ R

n×n and At,b1,At,b2 ∈ R
n×s

are estimated using the data up to the latest (tth) time
interval; they are reestimated when new data become
available. This allows model coefficients to be time-
varying. We will introduce how to update coefficient
matrices using new observations without storing his-
torical data in Section 5.3.

To express Equation (1) in a concise matrix form, let Yi

� [fi−m+1, fi−m+2, : : : , fi] and Bi � [bi−m+1,bi−m+2, : : : ,bi],

Figure 1. (Color online) The Singular Values of a 10-Day-
Long Yt−1 Collected from the Guangzhou Metro Smart Card
System
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wherem � t− qh is the number of target snapshots. Then,
Equation (1) is equivalent to

Yt ≈ At,1Yt−q1 +At,2Yt−q2 + : : : +At,hYt−qh +At,b1Bt−1
+At,b2Bt−2 (2)

� [At,1, At,2, : : :At,h, At,b1, At,b2]

Yt−q1
Yt−q2
⋮

Yt−qh
Bt−1
Bt−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

� GtXt, (4)

where Gt ∈ R
n×(hn+2s) and Xt ∈ R

(hn+2s)×m are augmented
matrices for coefficients and data, respectively. Note
that, with this approach, we model forecasting as a
regression problem without considering the interse-
quence dependence.

We next introduce a forgetting ratio ρ (0 < ρ ≤ 1) that
assigns small weights on snapshots to past days. This is
because the dynamics of the system may change over
time and we prefer to use the most recent dynamics to
achieve accurate forecasting. The matrix Gt can be
solved by the following optimization problem,

min
Gt

∑m
i�1

ρday(m)−day(i)‖yi −Gtxi‖2F, (5)

where yi and xi are the ith column of Yt and Xt,
respectively; day(i) represents the day of the snapshot
yi. We assign the same weight for snapshots of the
same day. The weight ρday(m)−day(m) � ρ0 � 1 for the lat-
est OD snapshot. For a snapshot in j days ago, the
weight is ρ j, which decreases exponentially. This
weighting idea is similar to works by Alfatlawi and
Srivastava (2020), Zhang et al. (2019a), and Kwak and
Geroliminis (2021). For convenience, we define σ � 



ρ
√

and the weighted version of Yt and Xt as

Yw
t � [σday(m)−day(1)y1, σ

day(m)−day(2)y2, : : : ,ym],
Xw

t � [σday(m)−day(1)x1, σday(m)−day(2)x2, : : : ,xm]:
Then, the optimization problem in Equation (5)
becomes an ordinary least squares problem:

min
Gt

‖Yw
t − GtXw

t ‖2F: (6)

Figure (2) summarizes the overall structure of the pro-
posed higher-order weighted DMD (HW-DMD)
framework. The underlying forecasting model is a
high-order vector autoregression with the boarding
flow as extra inputs. A forgetting ratio is introduced
to decrease the weights of past data exponentially on
a daily basis. In Section 5.2, we will introduce a
dimensionality reduction technique based on DMD to
find a low-rank solution for this large model (with
respect to number of parameters). Instead of full
matrices At,(·), we seek Ãt,(·)—much smaller matrices—

to capture the system’s dynamic. Finally, an online
update method is proposed in Section 5.3 to update
the model coefficients incrementally without storing
historical data. This provides a memory-saving solu-
tion that maintains an up-to-date model. Note that the
same model framework can be easily extended to
incorporate higher-order boarding flow or other exter-
nal covariates (e.g., days of the week, alighting flow,
holidays). For example, we can represent days of the
week by one-hot encoding wi ∈ R

7×1 and add an addi-
tional regression term At,wwi to Equation (1) to incor-
porate the weekly pattern. This paper only presents
the model specified in Equation (1) for illustration.

5.2. Model Estimation
We prefer a low-rank approximation of Gt over a full
matrix of the optimal solution of Equation (6). This is
because storing the large full matrix is prohibitive, and
the optimal solution often leads to overfitting prob-
lems, especially for the sparse and noisy OD data.
Luckily, we can find a pretty good approximation
thanks to the inherent low-rank nature of OD data.

Similar to the exact DMD, we first compute the trun-
cated SVD on the weighted augmented data matrix
Xw

t ≈UXΣXV�
X , where we keep the rX (rX �m) largest

singular values and UX ∈ R
(hn+2s)×rX ,ΣX ∈ R

rX×rX , VX ∈
R

m×rX . As shown in Figure 1, a few leading singular val-
ues can well capture the entire data. Therefore, an
approximation for coefficientmatrices is

Gt � Yw
t X

w+
t ≈ Yw

t VXΣ
−1
X U�

X , (7)

[At,1, : : : At,h, At,b1, At,b2]
≈ [Yw

t VXΣ
−1
X U�

X,1, : : : ,Y
w
t VXΣ

−1
X U�

X,h, Y
w
t VXΣ

−1
X U�

X,b1,

Yw
t VXΣ

−1
X U�

X,b2], (8)

where U�
X � [U�

X,1, : : : ,U
�
X,h, U

�
X,b1, U

�
X,b2], UX,1, : : : ,UX,h

∈ R
n×rX , and UX,b1,UX,b2 ∈ R

s×rX . This step uses the
result from a truncated SVD to replace the original
Xw

t , which reduces the impact of the noise in the data.
The results computed from Equations (7) and (8)

are still prohibitive. Therefore, for each column in Yw
t ,

we seek a transformation ywi → ỹw
i such that ỹw

i ∈ R
rY

with rY � n. In doing so, we compute another rank-rY
truncated SVD of the target matrix Yw

t ≈UYΣYV�
Y . The

columns of UY form an orthonormal basis; thus, the
transformation ỹw

i �U�
Yy

w
i computes the coordinates

of ywi on this basis, which compresses ywi from R
n to

R
rY . We can project coefficient matrices onto the same

basis UY to greatly reduce the dimensionality:

Ãt,i �U�
YAt,iUY ≈U�

YY
w
t VXΣ

−1
X U�

X,iUY, ∀ i ∈ {1, 2, : : : ,h},
(9)

Ãt,bj �U�
YAt,bj ≈U�

YY
w
t VXΣ

−1
X U�

X,bj, ∀ j ∈ {1, 2}, (10)
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where Ãt,i ∈ R
rY×rY and Ãt,bj ∈ R

rY×s. Finally, we can
write the model of Equation (2) in the reduced-order
subspace

Ỹt ≈ Ãt,1Ỹt−q1 + Ãt,2Ỹt−q2 + : : : + Ãt,hỸt−qh + Ãt,b1Bt−1

+ Ãt,b1Bt−2,

where Ỹi �U�
YYi. The final forecast of an OD snapshot

ŷi can be calculated by transforming back to the original
basis by ŷi �UYỹi. With the reduced coefficientmatrices

Ãt,(·) and projection bases UY, we avoid calculating and
storing the giant coefficientmatricesAt,(·).

DMD-based estimation is different from common
dimensionality reduction techniques in several ways.
For many matrix-factorization-based models and dy-
namic factor models, a forecasting model is estimated
after performing dimensionality reduction (e.g., Ren
and Xie 2017), or latent factors are constructed by keep-
ing the most temporal dynamics (e.g., Forni et al. 2000;
Lam, Yao, and Bathia 2011; Yu, Rao, and Dhillon 2016);
the forecast ability is designed on the latent (size-
reduced) data for these models. In contrast, DMD-
based methods first estimate a forecasting model by a
least-square fit of rank-reduced full-size data (i.e., Equa-
tion (7)) and then reduce the dimensionality of the lin-
ear operator by projecting to leading SVD modes (i.e.,
Equations (9)–(10)); the resulting linear operator cap-
tures the dynamics of the rank-reduced full-sized data.
Although the forecast value ŷi by an HW-DMD is
restricted on the column space of UY, it is already the
best approximation in R

rY (in terms of Frobenius norm;
Eckart and Young 1936) because the basis is determined
by leading singular vectors. Besides, the rank truncation
for the data also eases the noise and the overfitting
problem. As noted by Schmid (2010), accurate identifi-
cation of more than the first couple modes can be diffi-
cult on noisy data sets without this truncation step.

The major computational cost in parameter estima-
tion of HW-DMD is the SVD part. Current numerical
software can solve a large-scale SVD very efficiently.

Figure 2. (Color online) Model Framework for HW-DMD

Notes. Model input X contains hn rows for lagged OD snapshots and 2s rows for lagged boarding snapshots. Columns in Y and Ŷ are, respec-
tively, real and forecasted snapshots for OD flow. Model coefficients are estimated by weighted historical data (Xw

t and Yw
t ) and updated daily

whenever new data come.

Figure 3. (Color online) The Histogram of oi,j in an OD Snap-
shot of a Morning Peak in Guangzhou

Cheng, Trépanier, and Sun: Forecasting OD Matrices with HW-DMD
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Therefore, estimating the HW-DMD model is very
fast. We can further derive the eigenvalues and eigen-
vectors of coefficient matrices At,i (Proctor, Brunton,
and Kutz 2016). But this step is not necessary for our
task, since they are not used to generate the forecast
and there is no clear physical meaning for eigenvec-
tors in a high-order vector autoregression.

5.3. Online Update
A model trained by dated data may not reflect the
recent dynamic in a system. Instead of retraining
using entire data, we develop an online algorithm that
updates HW-DMD day by day with new observations
without storing historical data, as shown in Figure 2.
Similar algorithms for online DMD have been devel-
oped by Hemati, Williams, and Rowley (2014), Zhang
et al. (2019a), and Alfatlawi and Srivastava (2020). We
extend the online DMD update algorithm to a high-
order weighted version.

To illustrate the update algorithm, we need to reorga-
nize Equations (7)–(10). Let X̃

w
i �U�

XX
w
i and Ỹ

w
i �U�

YY
w
i

be the projection of data to the coordinates ofUX andUY,
respectively. Using the fact that (UXX̃

w
t )+ � VXΣ

−1
X U�

X ,
we can rewrite Equation (7) as

Gt ≈ Yw
t (UXX̃

w
t )+

� Yw
t X̃

w�
t X̃

w
t X̃

w�
t

( )+
U�

X :

Therefore, Equations (9) and (10) become

Ãt,i ≈ Ỹ
w
t X̃

w�
t X̃

w
t X̃

w�
t

( )+
U�

X,iUY � PQ+
XU

�
X,iUY ∀ i ∈ {1, : : : , h},

(11)

Ãt,bj ≈ Ỹ
w
t X̃

w�
t X̃

w
t X̃

w�
t

( )+
U�

X,bj � PQ+
XU

�
X,bj ∀ j ∈ {1, 2},

(12)

where P � Ỹ
w
t X̃

w�
t ∈ R

rY×rX and QX � X̃
w
t X̃

w�
t ∈ R

rX×rX .
To facilitate the online update, we define an addi-

tional matrix QY � Ỹ
w
t Ỹ

w�
t ∈ R

rY×rY . After the reorgani-
zation, model coefficients are represented by three
“core” matrices P,QX,QY and two projection matrices
UX,UY. Note that these matrices are also time-varying.
For simplicity, we omit the t subscript and regard that
they are always “up-to-date.” Moreover, there are two
important properties for the core matrices.

Theorem 1. Given new observations Ynew ∈ R
n×d and

Xnew ∈ R
(hn+2s)×d from a new day, where d is the number of

snapshots per day, under the same projection matrices, the
new core matrices can be updated by

P← ρP+ ỸnewX̃
�
new, (13)

QX ← ρQX + X̃newX̃
�
new, (14)

QY ← ρQY + ỸnewỸ
�
new, (15)

where X̃new �U�
XXnew and Ỹnew �U�

YYnew.

Proof of Theorem 1. Given new observations Ynew ∈
R

n×d and Xnew ∈ R
(hn+2s)×d from a new day, under the

same projection matrices, the new core matrix P can
be computed by

Ỹ
w
t+dX̃

w�
t+d � [σỸw

t , U
�
YYnew][σX̃w

t ,U�
XXnew]�

� [σỸw
t , Ỹnew][σX̃w

t , X̃new]�
� σ2Ỹ

w
t X̃

w�
t + ỸnewX̃

�
new

� ρP+ ỸnewX̃
�
new:

Therefore, P can be updated by P← ρP+ ỸnewX̃
�
new. A

similar proof applies to QX and QY. w

Theorem 2. Denote by Ȳ
w
t �UYỸ

w
t the recovered data

from the reduced data. If vi is the ith eigenvector of QY,

then UYvi is the ith left singular vector of Ȳ
w
t . The same

property applies to QX and X̄
w
t �UXX̃

w
t .

Proof of Theorem 2. Compute SVD Ȳ
w
t � ŪΣ̄V̄�; then

Ȳ
w
t Ȳ

w�
t � ŪΣ̄V̄�V̄Σ̄

�Ū� � Ū Σ̄Σ̄
( )

Ū�, (16)(
Ȳ

w
t Ȳ

w�
t

)
Ū � Ū Σ̄Σ̄

( ) � ŪΛ̄: (17)

Therefore, columns of Ū are the eigenvectors of
Ȳ

w
t Ȳ

w�
t and the left singular vectors of Ȳ

w
t . Substitute

Ȳ
w
t Ȳ

w�
t �UYQYU�

Y to Equation (17); we have

UYQYU�
Y

( )
Ū � ŪΛ̄,

QY U�
YŪ

( ) � U�
Y Ū

( )
Λ̄:

Define V �U�
YŪ. Then, each column vi in V is a eigen-

vector for QY and UYvi �UY U�
Y ūi

( ) � ui is a singular
vector of Ȳ

w
t . w

Theorem 1 is used to update the core matrices in a
memory-saving way. Theorem 2 indicates that we can
used the eigenvectors of QY to approximate the left
singular vectors of Yw

t (because Yw
t ≈ Ȳ

w
t ), which is

crucial for updating the projection matrices. Based on
these properties, we summarize the online update
algorithm in the following three steps.

1. Expand projection matrices. Let EY � Ynew −
UYU�

YYnew and EX � Xnew �UXU�
XXnew be the residuals

that cannot be represented by the column space of UX

and UY. To incorporate these residuals, we expand pro-
jection matrices by UX ← [UX,UEX] and UY ← [UY,
UEY], where UEX and UEY are the orthonormal bases
(obtained by SVD or QR factorization) of EX and EY,
respectively.

2. Update core matrices. To align dimensions, we
first pad P, QX, and QY with zeros on the dimensions
where UX and UY expanded. Then we update core
matrices by Equation (13)–(15).

3. Compression. The first two steps incorporate all
new information at the cost of expanding dimensions.
Next, we compress the model based on Theorem 2.
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DenoteVX andVY as thematrices composed by the lead-
ing rX and rY eigenvectors ofQX andQY, respectively.We
can compress projectionmatrices byUX ←UXVX, UY ←
UYVY to keep the leading singular vectors of X̄w

t+d and
Ȳ

w
t+d. The core matrices can be compressed accordingly

byQX ← V�
XQXVX, QY ← V�

YQYVY, P← V�
YPVX.

Besides the daily update, a more general setting can
be updating the model for every k intervals or only
doing the compression step when rX or rY exceeds a
threshold. This paper adopts the aforementioned
daily update because metro systems often have a one-
day periodicity. In terms of computational efficiency,
the online update algorithm computes the SVD for d-
column data matrices and eigenvalue decomposition
of QX and QY. The computation has a constant cost
every day and it is significantly faster than retraining
all data. In terms of memory efficiency, historical data
are not required when updating the model. All we
need to store are three “core”matrices and two projec-
tionmatrices. Regarding the error, the online algorithm
does not take into account the previously truncated
part. This impact is negligible because the truncated
part contains mostly noise, and past data are forgotten
exponentially. Our experiments in Section 6.6 show
that the online algorithm performs pretty close to or
even slightly better than retraining.

5.4. Connections with Other DMD Models
The proposed HW-DMD is closely related to Hankel-
DMD (Arbabi and Mezić 2017, Brunton et al. 2017,
Avila and Mezić 2020) and DMD with control (DMDc;
Proctor, Brunton, and Kutz 2016). Hankel-DMD uses
Hankel data matrices as input and output to model a
nonlinear dynamical system by a linear model; its DMD
modes approximate to Koopman modes. There is
another model also named higher-order DMD (HODMD;
Le Clainche and Vega 2017), which requires Hankeliz-
ing data in its estimation and is essentially similar to
Hankel-DMD. Instead, the proposed HW-DMD uses
raw snapshots as the output (the left-hand side of Equa-
tion (2)) without using the Hankel structure. This for-
mula is equivalent to a high-order vector autoregression
model, which is neater and more suitable in the context
of forecasting. Moreover, our model can use noncontin-
uous orders and external variables (e.g., the boarding
flow). Essentially, the external variables of our model
can be regarded as the control term of a DMDc model.

The three-step online update algorithm for HW-DMD
in this paper inherits from thework ofHemati,Williams,
and Rowley (2014). The original algorithm was devel-
oped for the exact DMD introduced in Section 4. Besides,
the onlineDMDproposedby (Zhang et al. 2019a) consid-
ers the decaying weight of data, but the constant projec-
tion matrix in their assumption restricts the update
effect. Alfatlawi and Srivastava (2020) proposed an
online algorithm for weighted DMD using incremental

SVD, which is a different technique from our method.
Our contribution is extending the algorithm proposed
by Hemati, Williams, and Rowley (2014) to a high-order
weighted version with the consideration of external
regression covariates.

6. Experiments
In this section, we compare the proposed HW-DMD
with other forecasting models using real-world data.
We begin with an introduction to data and experimen-
tal settings. Next, we compare model performances by
forecasting the OD matrices and the boarding flow
derived from the OD matrices. Finally, we examine the
long-term effect of the online HW-DMD update algo-
rithm. The code for the experiments is available from
https://github.com/mcgill-smart-transport/high-order-
weighted-DMD.

6.1. Data and Experimental Settings
We examine HW-DMD using the metro smart card
data from two cities, Guangzhou and Hangzhou. Both
data sets record the origin, destination, and entry and
exit time of each metro trip. We focus on the forecast
of workdays and connect each Friday to the next Mon-
day. Details of the two data sets are as follows.

• Guangzhou metro data: This data set covers
around 301 million trips among 159 metro stations in
Guangzhou from July 1 to September 30, 2017. Guang-
zhoumetro operates from 6:00 to 24:00. We use the first
20 weekdays (July 3 to July 28) as the training set, the
following 10 weekdays (July 31 to Aug 11) as the vali-
dation set, and the following 10 weekdays (August 14
to August 25) as the test set. There are additional one-
month data after the test set; we use these data to study
the long-term effect of the online HW-DMD update
algorithm.

• Hangzhou metro data2: This is an open data set
that covers 80 effective stations of Hangzhou metro
from January 1 to January 25, 2019. The operation hours
are from5:30 to 23:30.Weuse thefirst 10weekdays (Jan-
uary 1 to January 14) for training, the following four
weekdays (January 15 to January 18) for validation, and
the remaining five weekdays (January 21 to January 25)
for testing.

We aggregate OD snapshots by a 30-minute time
interval, which means 36 snapshots per day for both cit-
ies. Note that a small interval may result in sparse OD
matrices; we choose the 30-minute interval to balance
the practical requirements. Figure 3 shows the distribu-
tion of oi,j from an OD snapshot of a typical morning
peak in Guangzhou. The distribution roughly follows a
power law, with most OD pairs having small volumes
while a few of them are significantly larger. The highly
skewed distribution is very difficult to be properly han-
dled by conventional forecasting models.
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The performance of a model is quantified using the
root-mean-square error (RMSE), the weighted mean
absolute percentage error (WMAPE), and the coeffi-
cient of determination (denoted as R2):

RMSE(α, α̂) �





















1
N

∑N
i�1

(αi − α̂i)2
√

,

WMAPE(α, α̂) �
∑N

i |αi − α̂i |∑N
i |αi | × 100%,

R2(α, α̂) � 1 −
∑N

i�1 αi − α̂i( )2∑N
i�1 αi − ᾱ( )2 ,

where α and α̂ are, respectively, the real and predicted
values; ᾱ is the average value of α; and N is the total
number of elements under different time intervals
and locations. The three performance metrics are com-
puted for both OD flow o and boarding flow b (fore-
casted by b̂t,i �∑

jôt,i,j).

6.2. Hyperparameters
We use the online update algorithm for HW-DMD if not
otherwise specified. Hyperparameters for HW-DMD
include time lags q1, : : : ,qh, the SVD truncation rank rX,
rY, and the forgetting ratio ρ. These parameters are deter-
mined in sequential order.

We use the Guangzhou data set as an example to
elaborate the hyperparameter tuning procedure. We
first set rX � rY � 100 and ρ � 1 and select time lags in
a greedy manner. For time lags within one day
(3 ≤ qi ≤ 36), we repeatedly add a “currently best” time
lag based on the RMSE of the validation set until a new
lag brings no improvement or the number of lags
reaches 10. This procedure selects {3, 4, 8, 14, 19, 28, 30,
33, 35, 36} as time lags. The considerable high-order
time lags in the result indicate long-term autocorrela-
tions of OD time series. For example, the lag 19 roughly
equals a typical work duration (9.5 hours), which can
be explained as a strong correlation between the depar-
ture trips for commuters in the morning and the return-
ing trips in the afternoon (Cheng, Trépanier, and Sun
2021). The metro OD flow is also highly regular; the
largest several lags (e.g., 33, 35, and 36) capture the one-
day periodicity. Next, we determine rX and rY by a grid
search from 20 to 100 at an interval of 10. The best rY is
50. A larger rX than 100 still brings a marginal improve-
ment, but we truncate rX at 100 to restrict the model
size (rX affects the size of UX in the online update).
Lastly, we set ρ to be 0.92 based on a line search from
0.8 to 1. As shown in Figure 4, we can see that assigning
smaller weights for old data indeed improves the fore-
cast. Because 0:928 ≈ 0:51, using ρ � 0:92 is roughly
equivalent to halving the weight every eight days.

The hyperparameter tuning for the Hangzhou data
set follows the same procedure. The selected hyper-
parameters for the Hangzhou data set are time lags �

{3, 4, 6, 14, 18, 19, 28, 32, 35, 36}, rY � 40, rX � 100, and
ρ � 0:92.

6.3. Benchmark Models
We compare HW-DMD with the following bench-
mark models:

• HA: Historical average. For the OD flow at a cer-
tain period of the day (e.g., 7:00–7:30), HA uses the
average OD flow at that period in the training set as the
forecast value.

• TRMF: Temporal regularized matrix factorization
(Yu, Rao, and Dhillon 2016). TRMF is a matrix factori-
zation model that imposes autoregression (AR) pro-
cesses on each temporal factor. We use time lags
[1, : : : , 10] for the AR processes. We search over {100,
300, 500, 1000, 1500, 2000, 2500, 3000} for the best regu-
larization parameter and search from 30 to 150 with an
interval of 10 for the best number of factors.

• ConvLSTM: Convolutional LSTM (Shi et al. 2015).
It is a deep recurrent neural network model that fore-
casts future frames of matrix time series (e.g., videos).
Here, we use it to forecast future OD matrices by the
most recent 10 OD matrices. Following the work of
Zhang et al. (2021c), we apply a three-layer LSTM
structure with eight, eight, and one filter, respectively,
and set the kernel size to be 3 × 3 for all convolutional
layers in the model.

• FNN: A two-layer feedforward neural network.
We use the OD snapshots of three to 10 lags ago and
the boarding flow snapshot of one to two lags ago as
the input features. We perform a grid search over the
type of activation functions (linear, sigmoid, and relu)
and the number of hidden layers (from 10 to 100 at an
interval of 10) for the best model setting.

• SARIMA: Seasonal autoregressive integrated mov-
ing average. We only use SARIMA to forecast the

Figure 4. (Color online) The Effect of ρ to the Forecast OD
RMSE in the Validation set of the Guangzhou Data
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boarding flow since SARIMA only handles one-
dimensional time series. We use the order ARIMA
(2, 0, 1)(1, 1, 0)[36] for all the stations and fit 159 separate
models. This model configuration is the same as that of
Cheng, Trépanier, and Sun (2021) and was tested to be
suitable formostmetro stations.

Applying TRMF, ConvLSTM, and FNN to the origi-
nal data (or after a normalization) can hardly obtain a
forecast better than HA. This phenomenon was also
found by Gong et al. (2018, 2022). This is because the
OD data are high-dimensional, sparse, noisy, and
highly skewed. To improve the forecasting of these
models, we apply TRMF, ConvLSTM, and FNN to the
residuals after subtracting the HA from the original
data. This “mean-removal” processing also weakens
the data’s periodicity; therefore, we do not use seasonal
lags in these models. Besides, because the standard
TRMF and ConvLSTM cannot use the boarding flow as
extra inputs, we ignore the delayed data availability
problem for these models and assume that all historical
OD snapshots are available.

6.4. Forecast Result
We apply trained models to the test set and forecast
OD matrices of the next three steps at each time inter-
val. Note that OD snapshots of one to two lags ago
are unknown; they are replaced by previously fore-
casted OD snapshots when doing multistep rolling
forecasting by HW-DMD/FNN. Next, the boarding
flow can be calculated from ODmatrices. We compare
the forecast accuracy of models in terms of OD flow
and boarding flow.

Table 1 shows the results of OD flow forecast. We
can see that HW-DMD with a forgetting ratio ρ � 0:92

outperforms other models in all evaluation metrics.
Even the three-step forecast of HW-DMD is better
than the one-step forecast of other models. The advan-
tage of HW-DMD over other models is more signifi-
cant in the Hangzhou data set. Although TRMF, FNN,
and ConvLSTM are trained on the residuals after sub-
tracting the HA from the original data, the improve-
ment of these models compared with HA is limited.
In contrast, HW-DMD is directly applied to the origi-
nal data but provides a significantly better forecast,
demonstrating its strong prediction power in han-
dling the sparse, noisy, and high-dimensional OD
data. Besides, the performance of the “unweighted”
HW-DMD (ρ � 1) is slightly behind the weighted ver-
sion but still better than other models.

Examining the aggregated boarding flow is impor-
tant because it reflects if the forecast errors in the OD
matrices are properly distributed, which is crucial
when using OD matrices in traffic assignments. More-
over, the boarding flow itself is of interest to many
applications. Table 2 shows the boarding flow fore-
casting; all models except SARIMA calculate boarding
flow by OD matrices. The two HW-DMD models are
the best models in most cases. The only exception is
that FNN slightly outperforms HW-DMD for the
three-step forecast of the Guangzhou data set. Impor-
tantly, HW-DMD is the only model that outperforms
SARIMA, a well-established boarding flow forecast-
ing model, in both data sets, showing that the forecast
of HW-DMD accurately reflects the marginal distribu-
tion of OD matrices.

The magnitude of OD flow in a metro system varies
significantly in time and space dimensions. Therefore,
we further compare HW-DMD with other models

Table 1. Models’ Performance for OD Flow Forecasting

Method Criterion

Guangzhou Hangzhou

One-step Two-step Three-step One-step Two-step Three-step

HW-DMD
ρ � 0:92

RMSE 3.05 3.09 3.11 3.36 3.41 3.44
WMAPE 29.65% 29.77% 29.79% 31.76% 31.96% 31.84%

R2 0.957 0.956 0.955 0.934 0.932 0.931
HW-DMD

ρ � 1
RMSE 3.08 3.12 3.14 3.40 3.45 3.48

WMAPE 29.71% 29.87% 29.91% 31.94% 32.22% 32.13%
R2 0.956 0.955 0.954 0.933 0.930 0.929

TRMF RMSE 3.22 3.24 3.26 3.80 3.89 3.96
WMAPE 30.61% 30.72% 30.79% 34.02% 34.48% 34.82%

R2 0.952 0.951 0.951 0.916 0.912 0.908
FNN RMSE 3.15 3.16 3.18 3.97 4.01 4.05

WMAPE 30.23% 30.28% 30.32% 33.58% 33.63% 33.65%
R2 0.954 0.953 0.953 0.908 0.906 0.904

Conv-LSTM RMSE 3.25 3.26 3.27 4.04 4.06 4.08
WMAPE 30.11% 30.18% 30.23% 32.96% 32.92% 33.04%

R2 0.951 0.950 0.950 0.905 0.904 0.903
HA RMSE 3.43 3.43 3.43 4.34 4.34 4.34

WMAPE 31.21% 31.21% 31.21% 34.28% 34.28% 34.28%
R2 0.945 0.945 0.945 0.890 0.890 0.890

Note. Boldface indicates the best performance among all models.
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under different scenarios. Panels (a) and (c) of Figure 5
show the forecast RMSE at different times of a day.
We can see that the RMSE of HW-DMD is the smallest
in most time slots, particularly for the Hangzhou
data set. Other models, such as Conv-LSTM, perform
slightly better in the early morning and late night, but
the difference is close, and the total network OD flow
of these periods is pretty small. Panels (b) and (d) of
Figure 5 show the forecast RMSE for OD pairs with
different flow magnitudes. The forecast RMSE of
HW-DMD is considerably lower than other models for
high-flow OD pairs (average half-hour OD flow larger
than 24). Note that the number of OD pairs drops
exponentially with the increase of OD flow, showing
the superior forecast capability of HW-DMD for highly
skewed data.

Finally, we show the real and one-step forecast of OD
flow at four representative OD pairs of the Guangzhou
metro in Figure 6. The OD flow exhibits a clear daily
periodicity, explaining why HA already works reason-
ably well. Compared with FNN, HW-DMD is better at
forecasting the fluctuation of high-flow OD pairs, as
shown in panels (a) and (b) of Figure 6. In Figure 6(a),
the forecast of HW-DMD is often lower than the real
value; this is hard to avoid since there is a two-lag delay
when collecting the real OD flow. More OD pairs in the
system are like panels (c) and (d) of Figure 6 with a low
flow but high noise. Under such high volatility, the fore-
cast by HW-DMD reflects a smooth average value. In
fact, the performances of other models are often under-
mined by noise. The SVD truncation to the data greatly

enhances HW-DMD’s ability in handling the noise data
(Figure 1). Overall, HW-DMD achieves a great balance
between forecasting and noise reduction, which is par-
ticularly hard for such a high-dimensional system with
diverseflowmagnitudes.

6.5. Effect of the Low-Rank Assumption
The demands of majority OD pairs are small and sparse
by nature, making it difficult for a forecasting model to
distinguish random fluctuation (noise) and intrinsic
dynamic patterns. Taking the OD pair shown in Figure
6(d) as an example, the randomness in this OD pair is
quite large compared with its average flow (low signal-
to-noise ratio). A good forecasting should be robust to
the noise while maintaining accurate cumulative effects
of OD pairs in total (e.g., the boarding flow). This sec-
tion evaluates the impact of using the low-rank assump-
tion on forecasting and noise filtering.

According to Section 5.2, the forecast of HW-DMD
is always on the column space of UY. Therefore, the
best possible value of an OD snapshot ŷi calculated by
HW-DMD is the rank-reduced full-size data, that is,
UYU�

Yyi, which is the upper bound of an HW-DMD’s
forecast ability. Figure 7 shows how well this low-
rank approximation fits the original data. We can see
that the low-rank approximation keeps most informa-
tion for the high-demand OD pair of Figure 7(a). In
contrast, most fluctuations in the sparse-demand OD
pair of Figure 7(b) are truncated. By comparing with
HA, we can see that the low-rank approximation
reflects the average daily pattern of the sparse-

Table 2. Models’ Performance for Boarding Flow Forecasting

Method Criterion

Guangzhou Hangzhou

One-step Two-step Three-step One-step Two-step Three-step

HW-DMD
ρ � 0:92

RMSE 93.99 102.61 107.58 50.08 54.14 56.32
WMAPE 6.09% 6.68% 6.98% 7.38% 8.05% 8.12%

R2 0.991 0.989 0.988 0.989 0.988 0.987
HW-DMD

ρ � 1
RMSE 94.51 102.46 106.55 51.28 55.66 58.45

WMAPE 6.18% 6.74% 6.98% 7.54% 8.29% 8.43%
R2 0.991 0.989 0.988 0.989 0.987 0.986

TRMF RMSE 126.03 127.87 128.65 77.70 81.19 83.12
WMAPE 7.92% 8.07% 8.13% 10.00% 10.55% 10.81%

R2 0.983 0.983 0.983 0.975 0.972 0.971
FNN RMSE 101.93 104.00 106.06 67.16 68.83 70.77

WMAPE 6.44% 6.58% 6.69% 9.00% 9.22% 9.50%
R2 0.989 0.989 0.988 0.981 0.980 0.979

Conv-LSTM RMSE 117.16 121.22 123.40 71.46 75.75 78.07
WMAPE 6.87% 7.19% 7.35% 8.83% 9.63% 9.98%

R2 0.985 0.984 0.984 0.978 0.976 0.974
HA RMSE 136.56 136.56 136.56 88.25 88.25 88.25

WMAPE 8.38% 8.38% 8.38% 11.09% 11.09% 11.09%
R2 0.980 0.980 0.980 0.967 0.967 0.967

SARIMA RMSE 110.23 120.60 126.52 55.59 60.97 64.66
WMAPE 7.15% 7.65% 7.93% 7.86% 8.28% 8.50%

R2 0.987 0.985 0.983 0.987 0.984 0.982

Note. Boldface indicates the best performance among all models.
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Figure 5. (Color online) The RMSE of OD Flow Forecasting at Different Times and Different OD Pairs

(a)

(c) (d)

(b)

Notes. Panels (a) and (c) show the RMSE of OD matrix forecasting at every 30-minute interval, along with the total OD flow in the network.
Using 2i as boundaries, we divide OD pairs into groups according to their average half-hour OD flow; the forecast RMSE at each group and the
number of OD pairs of each group are shown in panels (b) and (d).

Figure 6. (Color online) The Real and Forecasted Time Series of Four Selected OD Pairs of the GuangzhouMetro

(a) (b)

(c) (d)

Notes. Panel (a) shows the busiest OD pair in the Guangzhoumetro data set. Panels (a)–(d) are in a flow-decreasing order.
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demand OD pair, which is a reasonable approxima-
tion when considering the cumulative effects of OD
pairs. Therefore, the rank truncation is crucial for fil-
tering the noise in a large number of sparse-demand
OD pairs.

Table 3 further quantitatively evaluates the differ-
ences between the original OD data and its low-rank
approximation. The results in Table 3 are the forecast
upper bound of HW-DMD under the current rank-
reduced space. By comparing Table 3 with the forecast
of HW-DMD in Tables 1 and 2, we can see that a signif-
icant portion of the forecast error of HW-DMD essen-
tially attributes to the rank truncation, but there is still
space to improve the current HW-DMD model (e.g., by
higher order, larger rX, more regression covariates).

In choosing the rank-reduced space, the two rank
parameters in HW-DMD balance the trade-off between
forecast accuracy and model complexity. Based on the
results of hyperparameter tuning, a further increase in
rank rY may result in overfitting (bringing the noise
into the rank-reduced target data). We can further
slightly improve the forecasting accuracy of HW-DMD
by increasing the rank rX (related to the rank-reduced
input data), but we here prefer a compact model with
a smaller rX at the cost of slight accuracy loss. Lastly,
the current HW-DMD chooses the rank-reduced space
purely based on the leading singular values, which
may be sensitive and not optimal when encountering
significant data anomalies and failures (Duke, Soria,
and Honnery 2012). Using optimized DMD (Chen, Tu,
and Rowley 2012) or combining with an anomaly
detection algorithm (Scherl et al. 2020) could further
improve the current HW-DMD.

6.6. Effect of the Online Update
The online update algorithm proposed in Section 5.3
can update HW-DMD’s parameters daily without stor-
ing historical data, which is computationally more effi-
cient. On the Guangzhou metro training set, it takes
18.76 0.43 seconds to train an HW-DMD model,
whereas the online update only takes 1.06 0.03 seconds
for each day.3 Other benchmark models have much lon-
ger training times than HW-DMD (more than one
minute for FNN and more than 20 minutes for TRMF
and Conv-LSTM). Besides the training time, we particu-
larly care about whether errors will accumulate if we
keep using the online update algorithm for a long time.
Therefore, we apply the online update algorithm to all
of the two-month data after the training set of the
Guangzhou data set to evaluate its long-term effect. In
comparison, we retrain two HW-DMD models (with ρ
� 0.92 and 1, respectively) every day using all historical
data up until the latest. The results are shown in Figure
8. We summarize the key findings for Figure 8 as
follows.

• The RMSE of a constant model gradually increases
over time. This indicates that the metro system’s
dynamics are time-evolving; thus, forecasting models
should be updated/retrained regularly for better
performance.

• The RMSE curve of the online update algorithm
clings to the model (ρ � 0:92) retrained every day by
entire historical data, showing that the online
HW-DMD update algorithm works consistently well in
long-term applications. For a large training set (e.g.,
after September in Figure 8), the online update
approach even performs slightly better than retraining.

• Properly reducing the weight for old data
improves the forecast. Compare ρ � 0:92 with ρ � 1 for
the two retrained models; the benefits of forgetting the
old data become more significant as the training data
increase.

• The OD flow of certain weekdays can be harder to
forecast, especially for the forecast of September. The
RMSEs on Fridays are significantly higher than on
other weekdays.

Figure 7. (Color online) Comparing OD Flowwith Its Low-
Rank Approximation in Two GuangzhouMetro OD Pairs

(a)

(b)

Note. Panels (a) and (b) correspond, respectively, to panels (a) and (d)
in Figure 6.

Table 3. The Difference Between Original Data and the
Low-Rank Approximation

Variable Criterion Guangzhou Hangzhou

OD flow RMSE 2.82 3.00
WMAPE 28.80% 30.65%

R2 0.963 0.947
Boarding flow RMSE 64.15 36.89

WMAPE 4.69% 5.95%
R2 0.996 0.994
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Many forecasting models do not consider the time-
evolving dynamics of a metro system. Regular retrain-
ing can be prohibitive, especially for complicated
models (e.g., deep learning models). This experiment
shows that the online update algorithm for HW-DMD
is a memory-saving and accurate approach to keep an
HW-DMDmodel up to date.

7. Conclusions and Discussion
This paper proposes a high-order weighted dynamic
mode decomposition (HW-DMD) model to solve the
real-time short-term OD matrix forecasting problem
in metro systems. Experiments show that HW-DMD
significantly outperforms common forecasting models
under the high-dimensional, sparse, noisy, and skewed
OD data. Particularly, we address the delayed data avail-
ability problem and the time-evolving dynamics of
metro systems, which are often ignored in the literature.
The idea of the forgetting rate and online update in deal-
ing with a time-evolving system is also beneficial for
other forecasting models. Moreover, the implementation
of HW-DMD is simple, and the computation is very effi-
cient, providing a promising solution to general high-
dimensional time-series forecasting problems.

We discuss several future research directions. (1)
Current HW-DMD reshapes OD matrices into vectors
for dimensionality reduction. However, performing
dimensionality reduction directly on OD matrices
may better utilize the column/row-wise correlations
and produce more concise models (Chen, Xiao, and
Yang 2021; Gong et al. 2022). A difficulty in this direc-
tion is that the low-rank feature in metro OD matrices
is relatively weak because the diagonal elements of
metro OD matrices are all zeros. (2) Another future
direction is to use a nonlinearmodel instead of the current
linearmodel in the reduced space, such as the deep factor
model (Wang et al. 2019a). But a limitation for a nonlinear

model is that an online updatemethodmay be difficult to
derive or even impossible. (3) Lastly, current HW-DMD
uses external features, such as the boarding flow, simply
as covariates. Incorporating more general features (e.g.,
weather, events) and network structure to improve the
HW-DMD isworth investigating.
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1 We use (·)+ to denote the Moore–Penrose inverse of a matrix.
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3 We report the mean 6 standard deviation of 20 runs. Tests were
run on a computer with an Intel Core i7-8700 processor and 24 giga-
bytes of RAM.
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