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A B S T R A C T   

E-scooter sharing systems have been widely adopted by cities around the world. Previous studies analyzed 
community-level factors influencing e-scooter usage. Few studies examined the effect of road features on e- 
scooter trip volume (ETV) of the road segment, which can reveal the road features that riders prefer. This study 
explores this topic by analyzing the ETV of 29,544 road segments in Calgary, Canada, while controlling for 
community-level factors. Because some segments are the boundaries of multiple communities, the multiple 
membership multilevel model is adopted to tackle this boundary problem. The results show that segments with 
sidewalks, dedicated bicycle facilities, lower speed limit, more street lights and trees have higher ETV. ETV is 
also higher in communities with high income, high percentage of commercial and residential area. Quantifying 
the effect of road features on ETV could help government agencies determine where e-scooters should be ridden 
and design road facility improvement plans for e-scooter users.   

1. Introduction 

As a new type of shared micro-mobility, e-scooter sharing (ESS) 
could provide door-to-door service with a fewer physical effort from 
users than bike sharing due to its features of electric drive. Despite its 
short history, ESS has been widely adopted by many cities around the 
world. In the United States alone, up to November 2019, ESS has been 
implemented in more than 100 cities (Urban, 2020). Many city admin-
istrators have realized the important role that ESS plays in the urban 
transportation system and have begun to discuss the regulation policies 
toward e-scooter as well as improvement of road infrastructure for e- 
scooter riding. Most of the discussion centered on what type of road 
infrastructure that e-scooter should be ridden. So far, different cities 
have very different policies and rules. For example, e-scooter is 
forbidden to be used on sidewalks in Brisbane but can be used on bicycle 
lanes and other facilities. In Christchurch, New Zealand, e-scooter is 
classified as “low-powered vehicles” and can be ridden on sidewalks or 
bikeways, but not on the roadways. In Calgary, Canada, the government 

has designated e-scooter should be mainly ridden on bike paths and 
sidewalks. 

To make the appropriate policies, government agencies should un-
derstand what type of road do e-scooter riders prefer to ride on. As a 
result, this study makes an effort to explore the relationship between 
road features and ETV to shed light on the preferences of scooter users. 
While route choice behavior analysis is the classical way to study this 
topic, due to the unavailability of such type of data, we propose an 
alternative method. By assuming that the preferred road segments 
would be used by e-scooter riders more frequently, we can study the 
relationship between the e-scooter trip volume (ETV) and features of a 
road segment while controlling for built environment factors of sur-
rounding communities that influence the e-scooter demand to under-
stand what type of road features are favored by e-scooter riders. 

The ESS pilot program in Calgary, Canada, was carried out in 2019. 
The program recorded the shared ETV on each road segment (29,544 
road segments in total). The data has been made available to the public. 
We used this dataset used for modeling and analysis. Since the pilot 
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program only provides trip data for three months (July, August, and 
September), the data for the months are used. Two types of variables are 
considered: segment features and built environment factors of sur-
rounding communities that influence the ETV. However, when 
including the built environment factors in the model, the unobserved 
heterogeneity problem may arise due to the fact that several segments 
could fall within one community, which possibly leads to a correlation 
between these segments. Thus, as a widely accepted method to deal with 
this unobserved heterogeneity problem, the multilevel modeling 
approach is adopted in this study. 

On the other hand, because some road segments are the boundaries 
of many communities, the user’s choice of riding on a certain segment is 
influenced by factors related to multiple communities. When including 
community-level factors in the regression model, it is difficult to find the 
one-to-one relationship between community and road segment, which is 
known as the boundary problem (Siddiqui and Abdel-Aty, 2012, 2016; 
Zhai et al., 2018). The common method for this problem is to treat a road 
segment neighboring multiple communities as several segments with 
each segment corresponding to one community, and thus the conven-
tional multilevel model (CMM) could be used (Cai et al., 2018; Chung 
and Beretvas, 2012; Pulugurtha and Sambhara, 2011; Wang and Huang, 
2016). Recent research of Park et al. (2020) shows that the multiple 
membership multilevel model (MMMM) could deal with the boundary 
problem by assigning equal weight to communities adjacent to one 
segment. Therefore, we will use the MMMM in this study and compare 
the result with that of CMM. 

The rest of this paper is organized as follows. In the second section, 
previous research related to this study is reviewed. Data and variables 
used in this study are described in Section 3. In the methodology section, 
the CMM and MMMM are introduced. In the results section, the outcome 
of the model is interpreted, and the performance of the MMMM is 
compared with that of the CMM. The last section presents the discussion 
and conclusion. 

2. Literature review 

2.1. ESS related studies 

So far, studies related to the association between the link level ETV 
and the infrastructure design and land use patterns are still limited. Most 
of the existing studies focused on the factors that influence ESS usage in 
different areas (Aguilera-García et al., 2020; Bai and Jiao, 2020; Caspi 
et al., 2020; Hosseinzadeh et al., 2021a; Hosseinzadeh et al., 2021b; Huo 
et al., 2021; McKenzie, 2019). Some other studies analyzed the impact of 
the ESS on the usage of other transportation modes such as private car, 
bike sharing, and bus (Guo and Zhang, 2021; Yang et al., 2021; Ziedan 
et al., 2021). Other scholars have studied people’s intention to choose 
ESS to travel (Aman et al., 2021; Eccarius and Lu, 2020; Gitelman et al., 
2017; Sanders et al., 2020), and found that travelers considered the 
riding environment as important factors. But these studies did not point 
out specifically what type of road features were favored by e-scooter 
riders. So far, there have been a limited number of studies focusing on e- 
scooter users’ preference of road attributes. These studies usually use 
route choice models to perform the analysis. Zou et al. (2020) analyzed 
the trajectory data of ESS trips which are extracted at the interval of 30s 
and found that the minor arterials, collectors, and local streets are the 
most popular facilities used by ESS, and if there are bicycle lanes on the 
streets, they will likely attract more e-scooter traffic. Zuniga-Garcia et al. 
(2021) analyzed the trajectory data of ESS trips and found that the 
average riding distance decreases when the scooters are ridden on the 
following three types of infrastructures: automobile lane, sidewalk, and 
bicycle lane. However, the road infrastructure analyzed in this study is 
somehow limited. Some important factors such as lighting and greening 
are omitted. Zhang et al. (2021) applied the Recursive Logit route choice 
model to study the features of infrastructures that e-scooter riders prefer. 
The results showed that ESS users prefer shorter and simpler routes. 

They also have higher willingness to ride in bikeways, multi-use paths, 
as well as one-way roads. However, the study area is only the Virginia 
Tech’s campus. The results of this study not may be applicable to other 
places. 

2.2. Studies related to route choice behavior of bicyclists 

Route choice behavior is usually analyzed to explore the effects of 
the road environment on riders’ choice of road segment or route. Since 
both e-scooter and bicycle belong to the category of micro-mobility, 
studies related to the route choice behavior of bicyclists are reviewed 
in this section to gain insights on what road features are more favored by 
riders. 

First of all, distance is one of the most important environmental 
factors affecting route choices (Hood et al., 2011; Menghini et al., 2010; 
Stinson and Bhat, 2003). The change in terrain elevation is also a sig-
nificant factor. Riding on a steeper slope requires more physical effort 
from cyclists (Broach et al., 2012). When there are motor vehicles 
traveling on the road, the size and speed of motor vehicles could affect 
the safety perception of cyclists (Stinson and Bhat, 2003; Tilahun et al., 
2007). Various types of road infrastructure, such as bike path, road 
lights, bike facility signs, and markings, could all influence bicyclists’ 
route choice (Dill et al., 2014; Monsere et al., 2014; Tilahun et al., 2007). 
It can be seen that road attributes could indeed influence bicyclists’ 
choice of road segment, and these results could assist in designing more 
friendly roads for cyclists to provide a safer and more comfortable riding 
environment. These results are also helpful for designing e-scooter 
friendly roads. 

2.3. Studies related to boundary problems 

To study the influence of attributes of segments on ETV, it is neces-
sary to control for the community-level attributes that also influence the 
ETV. When including those attributes in the model, the unobserved 
heterogeneity problem would arise because several road segments could 
fall within one community (Park et al., 2017; Raudenbush and Bryk, 
2002). The multilevel model is widely used in transportation-related 
studies to deal with this problem (Ding and Cao, 2019; Gehrke, 2020; 
Hong and Goodchild, 2014; Iseki et al., 2018; Kim et al., 2014; Sabouri 
et al., 2020; Yang et al., 2021; Yang et al., 2022). On the other hand, 
since many segments are the common boundary of multiple commu-
nities, a boundary problem could also arise, which means that multiple 
communities are related to one road segment, and it is difficult to build a 
one-to-one relationship between community and road segment (Cai 
et al., 2018; Wang and Huang, 2016; Wang et al., 2017). A common 
practice is to aggregate the attributes of multiple adjacent communities 
to build a virtual community by giving weight to each community. 
Methods in these studies can be generally classified into four types: (1) 
Treat a road segment that is the boundary of multiple communities as 
several segments, each of which corresponds to one adjacent community 
(Park et al., 2020). This method would overweight the boundary road 
segment and thus lead to biased results. (2) Adopt a larger community to 
include as many analysis units with boundary problems as possible and 
choose a dominant community for the rest of the units with the problem 
(Cai et al., 2018). This method would reduce the sample size and it is 
easy to overlook the influence of some non-dominant communities on 
the analysis unit. (3) Determine the weight based on the geographic area 
of the community (Wang and Huang, 2016). This method weakens the 
influence of some communities with small geographic areas but high 
impact. (4) Draw a buffer area around the road segment as the catch-
ment area (Wang et al., 2017). But the selection of buffer radius is 
usually arbitrary. So, all of these methods have some shortcomings. A 
recent study by Park et al. (2020) has shown that assigning equal weight 
to multiple communities adjacent to one segment could avoid over-
valuing the effect of certain communities and could obtain better results. 
As a result, in this study, we adopt this method to deal with the boundary 
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problem. 
To sum up, the effects of road features on ETV are still not clear, 

which prohibits the appropriate design of related policies and regula-
tions. In order to fill this gap, this paper employs a multilevel modeling 
approach to explore the effect of road segment attributes on the ETV of 
the segment while controlling for community-level attributes. The re-
sults of this study could provide a valuable reference to policymakers to 
determine what type of lane or road should e-scooters be ridden on. 

3. Data 

3.1. Study area 

Calgary is located in the province of Alberta, western Canada. Its 
land area is about 825.56 km2, and its population density is 1,501.1 
persons/km2. Calgary is also the third largest municipality in Canada 
(after Toronto and Montreal). With warm summers and cold, dry win-
ters, the city was named the most livable city in North America in 2018 
and 2019. The city currently operates two light rail lines and more than 
160 bus lines. In October 2018, the government passed a two-year 
Shared Mobility Pilot to explore new ways of providing flexible, 
affordable and accessible mobility options. Since the launch of the pilot, 
there have been three permitted private sector operators (Lime, Bird 
Canada, and Roll) and 1.9 million shared mobility trips. The pilot pro-
vided that ESS are permitted to operate on the City’s bicycle lanes and 
pathways and quiet sidewalks, and are not allowed to ride on busy 
roadways. The map of Calgary is shown in Fig. 1. The Calgary Transit 
system is made up of bus and light rail transit (LRT) (see Fig. 2). 

3.2. Data description 

The city of Calgary offers an open data platform that provides trip 
data of the ESS system, which is a two-year pilot program. The data 
includes departure and arrival time, trip starting and ending location 
(with the accuracy of about 1 m), and trip distance and duration. We 
downloaded the data on December 1st, 2019.1 The time period of data 
used in this study is from July 1st to September 30th, 2019. The road 
segments with ESS trip records are obtained.2 The ETV of each road 
segment is also provided by the dataset. In the original data, there were 
29,585 road segments. We deleted 41 segments that are outside of the 
city. Thus, 29,544 road segments are left and used for this study. The 
total volume of e-scooter trips on these segments is 4,517,014. 

3.2.1. Community-level factors 
The selected community-level variables contain three categories: 

demographics, transportation infrastructure, and land use. The 
descriptive statistics of the selected variables are shown in Table 1. 

3.2.2. Segment-level factors 
The segment-level factors contain four categories: design, sidewalk, 

bikeway type, and roadway type. The descriptive statistics of the 
selected variables are shown in Table 2 and Table 3. 

According to the classification published by the official website of 
the Calgary Municipal Government (Calgary, 2019a), bicycle facilities 
are divided into four categories. The first category, cycle track, is 
completely separated from the roadway and has designated signs and 
marking. It is the most exclusive type of bicycle facility for riding and 
thus provides riders with the most comfortable riding environment. The 
second category is the bicycle lane, which is set between the lanes of the 
opposite traffic, equipped with signs and markings. The third category is 

the shared way, on which bicycles share the lane with motor vehicles. 
But there are signs set up showing bicycles could be ridden in the lane. 
The fourth category is on-street bikeway. The main difference between 
on-street bikeway and shared way is that there are no signs showing 
bicycles could be ridden in the lane. Some segments, however, have no 
bike facilities, so they are represented by others. Fig. 3 shows the layout 
of each type of bicycle facility. If a motor vehicle’s color is grey, it means 
parked, while black means moving. 

According to Calgary’s road classification standard (Calgary, 2019b), 
the roadway is divided into five types, ordered based roughly on Annual 
Average Daily Traffic (AADT) from high to low: skeletal roads, arterial 
street, prestige road, urban boulevard, and neighborhood boulevard. 
Skeletal Roads mainly refer to rapid roads in cities, with AADT 
exceeding 30,000 Passenger Car Unit per day (pcu/d). This type of road 
has a high traffic volume, and there are usually no sidewalks or bicycle 
facilities on the road. The arterial street is also a rapid road, with AADT 
ranging from 10,000 pcu/d to 30,000 pcu/d. It is the major component 
of the road network of a city. Usually, the bicycle lanes and sidewalks are 
physically separated from the roadway on the arterial by green belts and 
fences. The main role of the collector road is to connect the local street to 
the main street. Urban boulevard is an important part of the urban road 
network, which can directly connect to residential areas. The motor 
vehicles running on this type of road have a relatively low speed. At the 
same time, it is fully integrated with the adjacent mixed land use and has 
better access to the surrounding communities. Usually, these roads are 
designed with more emphasis on greenery, lighting, and so on. The 
neighborhood boulevard is similar to urban boulevard, which mainly 
connects to various communities. Walking and bike riding have priority 
on such roads. Road segments without motor vehicles, used only for 
residents or for special purposes, are uniformly indicated by others. 

3.3. Data analysis 

Fig. 4 shows the spatial distribution of the ESS trip origin in Calgary. 
It can be seen from the figure that ESS was used most frequently in the 
downtown area, and the farther away from the downtown, the lower the 
volume is. Although the central areas only occupy 10% of the total area 
of the city, about 90% of the trips originated from these areas. Studies 
from other cities drew similar conclusions (Caspi et al., 2020). Since the 
University of Calgary is not open to ESS during the study period, ESS 
usage is low in the university area, and thus segments in this area have 
been deleted. 

The spatial distribution of road segments of different ETVs in Calgary 
is shown in Fig. 5. It can be seen that although the usage for ESS is high 
in the downtown area, the ETVs on different segments within the same 
region still differ. 

To understand what type of road segment is used more frequently by 
e-scooter riders, we compare the proportion of a certain type of road 
segment to the total number of road segments with the proportion of 
ETV on this type of segment to total trip volume. We divide the latter 
proportion by the former proportion to get an index, which is called the 
utilization rate. When the rate is higher than 1, it means that the pro-
portion of ETV on this type of road segment is higher than the proportion 
of this type of segment to the total number of segments, which indicates 
this type of road segment is favored by e-scooter riders. A higher value of 
the utilization rate indicates the type of road segment is more favored by 
riders. The results are shown in Table 4. We can see that in terms of 
bikeway and roadway type, segments with cycle track and neighbor-
hood boulevard have the highest utilization rates, around 22.250 and 
6.534, respectively. Regarding whether there is a sidewalk on the road 
segment, it can be seen that the utilization rate of road segments with a 
sidewalk is much higher than that of segments without a sidewalk. 

The numbers of trips of different trip distances (with an interval of 
0.1 km) and detour ratios (with an interval of 0.1) are shown in Fig. 6. 
The detour ratio is calculated as the ratio of trip distance divided by the 
straight-line distance between origin and destination. It can be seen 

1 https://data.calgary.ca/Transportation-Transit/Shared-Mobility-Pilot- 
Trips/jicz-mxiz.  

2 https://data.calgary.ca/Transportation-Transit/Shared-Mobility-Pilot-Trip- 
Segment-Counts/75pg-pxz2. 
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from Fig. 6 that the trip distance and detour ratio of ESS trips mostly 
range from 0 to 4 km and 1–3, respectively. It can be seen that the ESS is 
usually used for short-distance travel. 

4. Methodology 

This section describes the models that will be used in this study. First, 

the variance partition coefficient (VPC), which is the variance at a given 
level of the model divided by the total variance, is used to determine 
whether the multilevel modeling approach should be adopted. In this 
study, it can be regarded as the proportion of variance explained by the 
community-level model. A higher value of VPC indicates the multilevel 
model is more suitable. The research results showed that when the VPC 
was greater than 0.05 (5%) (Browne et al., 2005; Goldstein et al., 2002; 
Yoon et al., 2017), a multilevel model should be used. We used the 
method proposed by Browne et al. (2005) to calculate the VPC value. 

VPC = σ2
u/(σ2

e + σ2
u) (1)  

where σ2
u is variance at the community level, and σ2

e is variance at the 
road segment level. 

4.1. Conventional multilevel model 

Equation (2) is a two-level model that considers the fact that many 
road segments fall within one community (Raudenbush and Bryk, 2002). 
In the model, the road segment is set to be the first level, and the 
community is set to be the second level. 

Yij = β0j +
∑P

p=1
βpjXpij + eij(Level1)

β0j = γ00 +
∑Q

q=1
γ0qZqj + uij(Level2)

eijhN
(
0, σ2

e

)
uijhN

(
0, σ2

u

)

(2) 

On the segment level (level 1), Yij represents the ETV on road 
segment i in community j. Xpij represents attribute p of road segment i in 
community j. βpj represents the regression coefficient. eij is the error term 
or residual that is assumed to follow the normal distribution. On the 
community-level (level 2), β0j is the random intercept of the segment- 

Fig. 1. Study area: City of Calgary (left); Canadian provinces (top right); Province of Alberta (bottom right).  

Fig. 2. Public transportation facilities in Calgary.  
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level model that is determined by the attributes of the community. Zqj 
represents the explanatory variable q for community j. γ0q represents the 
regression coefficient for Zqj. uij is the error term or residual of the second 
level that is also assumed to follow the normal distribution. The residual 
of Yij is divided into two parts, eij and uij. These two parts of the residual 
are used to compare the relative influence of variables of the first and 
second levels on Yij. 

However, some road segments are at the boundary of multiple 
communities, and cannot be simply regarded as falling within a single 
community. As a result, MMMM is used to deal with this problem and is 
described below. 

4.2. Multiple membership multilevel model 

Equation (3) is the mathematical expression of the MMMM. In the 
model, the intercept term of the second level represents the influence of 

multiple communities. 

Yij = β0j +
∑P

p=1
βpjXpij + eij(level1)

β0j = γ00 +
∑Q

q=1
γ0q

∑
j ∈ Com(i)wijZqj +

∑
j ∈ Com(i)wijuij(level2)

eijhN
(
0, σ2

e

)
uijhN

(
0, σ2

u

)

(3) 

In Eq. (3), 
∑Q

q=1γ0q
∑

j∈Com(i)wijZqj is the fixed part of the model, which 
is the sum of the product of the weighted sum of community-level 
influencing factors and corresponding regression coefficient; The 
random part of the model,

∑
j∈Com(i)wijuij, is the weighted sum of random 

effects of the second level. The sum of the weights is equal to 

1
(∑

j∈Com(i)wij = 1
)

. In this study, equal weight is used, as suggested by 

Park et al. (2020). 

5. Results 

Before modeling, we calculated correlation coefficients to detect the 
multicollinearity of variables. According to previous research, variables 
with correlation coefficients greater than 0.5 or lower than − 0.5 are 
considered highly correlated (Rose and Hensher, 2014). Since we use 
many socioeconomic and built environment variables, some of them are 
highly related (Yang et al., 2022; Yang et al., 2022). For example, the 
correlation coefficient between population density and employment 
density and that of population density and road density are higher than 
0.6, and thus employment density and road density variables are 
deleted. 

The dependent variable is the cumulative ETV for three months on 
each road segment, which is a count variable. We performed a natural 
logarithmic transformation on the dependent variable to make it 
roughly follow the normal distribution, which is a common practice and 
is also used to study the ESS usage in Austin by Caspi et al. (2020). Both 
MMMM and CMM were fitted using MLwiN software and the Bayesian 

Table 1 
Descriptive statistics for community-level factors.  

Type Factors Definition Min. Max. Mean S.D. 

Demographics Income Median income 9,866.124 103,581  42,022.466  16,776.471 
Transportation infrastructure Population density Persons per square kilometer 342.590 12,195.363  2,730.32  1,498.580 

Employment density Jobs per square kilometer 18.548 8,769.063  1,422.364  911.830 
Road density Road length per square kilometers 6.994 63,368.290  19,436.450  8,307.956 
Transit density Bus and LRT stops per square kilometer 0 60.123  34.1321  12.099 
Intersection density Intersections per square kilometer 0 5.213  2.435  0.853 

Land use Commercial Core Percentage of commercial area 0 0.800  0.005  0.064 
Commercial Percentage of commercial area 0 0.464  0.040  0.062 
Residential density Percentage of residential area 0 0.734  0.071  0.078 
Industrial Percentage of industrial area 0 0.873  0.035  0.141 
Institutional Percentage of institutional area 0 0.956  0.035  0.184 
Park Percentage of park area 0 0.754  0.120  0.456  

Table 2 
Descriptive statistics of segments-level factors.  

Type Factor Definition Min. Max. Mean S.D. 

Design Elevation Road segment elevation (m) 1,007.786 1,258.088  1,106.541  43.516 
Speed Speed limit for motor vehicle 30 110  39.547  12.169 
Distance The distance from the segment center to the city center 0 22,596.640  7,846.935  4,496.142 
Trees density Number of trees along the road segment per kilometer 0 31.299  0.298  27.38 
Lights density Number of street lights along the road segment per kilometer 0 12.835  0.057  4.025 
Intersection If the road segment connects to an intersection = 1, otherwise = 0 0 1  –  – 

Sidewalk Sidewalk If the road segment has sidewalk = 1, others = 0 0 1  –  – 
Bikeway type Bikeway type On-street Bikeway = 4, 

Shared way = 3, Bicycle lanes = 2, Cycle tracks = 1, others = 0 
0 4  –  – 

Roadway type Roadway type Neighborhood boulevard = 5, 
Urban boulevard = 4, Collector = 3, Arterials road = 2, Skeletal roads = 1, others = 0 

0 5  –  –  

Table 3 
Descriptive statistics of the discrete variables.  

Factor Level Segment 
Number 

Segment 
proportion 

Intersection The road segment connects to 
an intersection 

7,447  0.252 

Others 22,097  0.748 
Bikeway Cycle tracks 109  0.004 

Shared Lane 612  0.021 
Bicycle Lane 400  0.012 
On-Street Bikeway 3,099  0.106 
Others 25,324  0.857 

Roadway Skeletal roads 326  0.011 
Arterials roads 2,466  0.083 
Collectors 8,047  0.272 
Urban boulevard 643  0.022 
Neighborhood boulevard 364  0.012 
Others 17,698  0.599 

Sidewalk The road segment has sidewalk 9,134  0.309 
Others 20,410  0.691  
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MCMC parameter estimation method (Browne, 2014; Browne et al., 
2001; Yang et al., 1999). In each model, we used a burn-in of 1000 it-
erations and a monitoring chain of 20,000 iterations. The results of the 
two models were compared. 

Table 5 compares the community-level variance, segment-level 
variance, and VPC of CMM and MMMM. The VPC values of the two 
models are both higher than 0.05. It shows that the multilevel model is 
more suitable for our research than the single-level model. 

The Deviance Information Criterion, a likelihood-based measure for 
comparing non-nested multilevel models (DIC), is used to quantitatively 
evaluate performance between the MMMM model with CMM, which is 
consistent with other studies (Park et al., 2020; Stinson and Bhat, 2003). 
The results are shown in Table 6, which includes factors that are sta-
tistically significant at the 10% level. It can be seen that MMMM has a 
smaller DIC value compared to CMM, which shows that MMMM fits the 
data better. The interpretation of the model results is shown below. 

5.1. Segment-level factors 

5.1.1. Road design 
From the modeling results, we can see a negative correlation be-

tween the altitude of the road segment and ETV, which shows that 
although the e-scooter is electric powered, the users are still unwilling to 
ride to segments of higher elevation by climbing up the hill. In terms of 
the surrounding environment of the road, there is a positive correlation 
between the ETV and the density of trees as well as the density of street 
lights along the road segment. This finding is consistent with previous 
studies indicating that the degree of green surrounding the road could 
improve residents’ travel experience from a visual perspective (by 
providing shades, and the setting of street lights could improve the sight 
distance and safety of riding at night) (Park and Akar, 2019). In addi-
tion, we also analyze the impact of connecting to an intersection on the 
ETV of the road segment, and the results show that there is a positive 
correlation between the two. The study of Caspi et al. (2020) also drew 
similar conclusions. It shows that the accessibility provided by 

Fig. 3. Layout of bikeway facilities.  

Fig. 4. Spatial distribution of ESS usage in Calgary.  Fig. 5. ETV on segments of road in Calgary.  
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connecting to an intersection in terms of allowing e-scooter riders to go 
straight, turn right, or turn left is more important than the possible delay 
caused by the traffic light at the intersection. There is a negative cor-
relation between the speed limit of motor vehicles of the road segment 
and ETV. A higher speed limit is related to higher traffic speed, which 
could potentially increase the severity of traffic accidents and thus re-
duces the willingness of e-scooter users to ride on this type of segment. 
Regarding the relationship between the distance from the center of the 
road segment to the city center and the ETV of a segment, the results 
show that there is a negative correlation, which indicates the segments 
closer to the city center have a higher ETV. 

5.1.2. Bikeway 
We find that different types of bikeways are favored differently by e- 

scooter riders. Firstly, we show that compared with other types of bi-
cycle lanes, the coefficient of the variable cycle track is the highest, 
which means that the exclusive right of way is important and attractive 
to e-scooter riders. A segment with a cycle track is associated with an 
increase of 46% of ETV compared to segments without such a track. This 
is consistent with the results of previous studies that have shown that 
dedicated bicycle lanes have the highest safety level among multiple 
types of bicycle facilities (Apasnore et al., 2017; Debnath et al., 2018). 

Secondly, the existence of bicycle lanes on the road segment could 
significantly increase the ETV of the segment. This verifies the results of 
previous studies that the density of bicycle lanes in the community is 
positively related to ESS demand (Caspi et al., 2020). Thirdly, compared 
with the type of other, the on-street bikeway is also positively related to 
ETV, although the value of the coefficient is lower than those of the 
previous two types. At last, the shared way could also increase the ETV 
of the road segment. The values of coefficients of the four types of bi-
cycle facilities correspond to how exclusive the facility is, with a higher 
value corresponding to a more exclusive facility. 

5.1.3. Roadway 
Modeling results show that compared with other road types, neigh-

borhood boulevard has the highest coefficient, which indicates it is the 
most favored roadway of e-scooter riders. This is probably because 
neighborhood boulevard provides riders and pedestrians the highest 
right-of-way, with a safe and comfortable riding environment, which is 
very suitable for e-scooters to be ridden on. Research on the route choice 
of bicyclists also found that a relatively complete bike infrastructure 
could improve the cyclist’s riding experience (Stinson and Bhat, 2003). 
The second road type, urban boulevard, is also related to high ETV. 
Although this type of road has a higher traffic volume, the speed of 
traffic is relatively low, and pedestrians and cyclists still have a rela-
tively high right of way. The arterials roads and collectors are also 
positively related to ETV, indicating these road segments are more 
favored than the reference road type, others. But they are not as 
attractive as neighborhood boulevards and urban boulevards. 

5.1.4. Sidewalk 
We find that road segments with sidewalks are related to higher ETV, 

Table 4 
Utilization rate of road segment attributes.  

Type Factor Segment Number Segment proportion1 ETV Volume proportion2 Volume proportion / Segment proportion 

Bikeway Cycle tracks 109  0.004 400,259  0.089  22.250 
Shared Lane 612  0.021 305,193  0.068  3.238 
Bicycle Lane 400  0.012 96,865  0.021  1.750 
On-Street Bikeway 3,099  0.106 459,236  0.102  0.962 
Others 25,324  0.857 3,255,461  0.720  0.840 

Roadway Skeletal roads 326  0.011 6,482  0.001  0.130 
Arterials roads 2,466  0.083 514,802  0.114  1.365 
Collectors 8,047  0.272 975,235  0.216  0.793 
Urban boulevard 643  0.022 593,020  0.131  6.032 
Neighborhood boulevard 364  0.012 363,632  0.081  6.534 
Others 17,698  0.599 2,063,843  0.457  0.763 

Sidewalk Sidewalk 9,134  0.309 3,349,840  0.742  2.399 
Others 20,410  0.691 1,167,174  0.258  0.373  

1 Segment proportion: The ratio of the number of road segments with this attribute to the total number of road segments (29,544). 
2 vol proportion: The ratio of the ETV on this type of road segment to the total ETV (4,517,014). 

Fig. 6. Number of trips of different trip distances and detour ratios.  

Table 5 
Variance of the community level and segment level.   

CMM MMMM 

Community-level Variance  0.165  0.196 
Segment-level Variance  0.125  0.118 
VPC  0.635  0.734  
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which means that e-scooters tend to be ridden on road segments with 
sidewalks even after controlling for other variables. It shows that the 
sidewalk could provide a more comfortable riding environment. How-
ever, riding an e-scooter on the sidewalk would inevitably lead to 
interference with pedestrians, which may cause safety issues. In 
particular, vulnerable road users such as the elderly, children, and pe-
destrians with limited mobility are often at a disadvantage when 
encountering e-scooters, which are usually ridden at high speed (Sikka 
et al., 2019). 

5.2. Community-level factors 

For community-level variables, it can be seen from Table 5 that there 
is a positive correlation between population density and the number of 
e-scooter trips of the road segment, consistent with the study of (Bai and 
Jiao, 2020). Regarding income, the results show a positive correlation 
between the number of e-scooter trips and the median income of resi-
dents in the community. This is different from the study of Caspi et al. 
(2020), which found that the relationship between the median income of 
residents in the community and e-scooter trips was not significant in 
Austin. More research should be performed to investigate the relation-
ship between e-scooter usage and the income of local residents to clarify 
the relationship. Regarding the relationship between e-scooter usage 
and public transit ridership, it is found that ETV is positively related to 
the density of bus stops and LRT stations in the surrounding community. 
This shows that ESS could be used as one of the tools to solve the “last 
mile problem” of transit. 

Regarding land use, model results show that the ETV is positively 
correlated with the land use type of commercial core. Since the com-
mercial core is located in the downtown area of Calgary, this finding is 
consistent with previous research that revealed shared e-scooters were 
mainly ridden in the central business district and downtown area (Bai 

and Jiao, 2020; Caspi et al., 2020). At the same time, the land use of 
residential and commercial is also positively related to e-scooter usage. 
The correlation between the land use of public institutions and ETV is 
not significant, while the correlation between industrial land use and 
ETV is negative. There are similar conclusions in the study of Caspi et al. 
(2020). The land-use type of park has a positive correlation with ETV. 
There are two possible reasons. Firstly, the e-scooter is sometimes ridden 
for entertainment and thus is ridden in parks. Secondly, there are 
pathways in parks that are separated from motor vehicles, and e-scooters 
could be ridden on those parkways safely and comfortably. Bai and Jiao 
(2020) also found that ESS was more concentrated in recreational areas 
or park areas, which is consistent with our findings. 

6. Discussion and conclusions 

Since the advent of ESS, it has raised a lot of debate about what type 
of road infrastructure e-scooter should be ridden on, its speed limit, 
safety performance, and its impact on other modes of transportation. 
Previous studies usually focused on exploring the spatial variation of ESS 
demand at the community or zone level and analyzed the impact of 
regional socioeconomic and built environment factors on ESS ridership. 
While these studies provide guidance on how to determine the high- 
demand area and how the change of built environment could influ-
ence ESS ridership, they provide few insights on what type of road 
infrastructure e-scooters should be ridden on. This information is 
important when designing the appropriate infrastructure for e-scooter 
riders or making policies regulating what type of lane e-scooters should 
be ridden on. 

In this paper, we analyze how road environment factors influence the 
ETV of the road segment. The multilevel modeling approach is used to 
deal with the heterogeneity problem caused by the fact that multiple 
road segments fall within one community. Besides, because some road 

Table 6 
Model Results.     

Conventional multilevel model Multiple membership multilevel model    

Coef. Std. Dev. p Coef. Std. Dev. p  

(Intercept) 3.863 0.283 <0.001 2.982 0.291 <0.001  
Community-level Density Population density 4.81E-05 1.75E-05 0.006 4.87E-05 1.88E-05 0.006   

Transit density    0.002 4.07E-04 <0.001   
Intersection density    0.001 1.87E-04 <0.001  

Demographics Median income    4.77E-06 1.50E-05 <0.001  
Land use Residential 0.019 0.006 <0.001 0.014 0.003 <0.001   

Commercial    0.817 0.149 <0.001   
Commercial-Core 1.211 0.558 0.030 0.985 0.125 <0.001   
Industrial − 0.790 0.162 <0.001 − 0.106 0.068 0.050   
Park 0.223 0.007 <0.001 0.212 0.007 <0.001 

Segments-level Road design Trees density 0.001 1.36E-04 <0.001 0.001 1.42E-04 <0.001   
Lights density 0.007 0.001 <0.001 0.006 0.001 <0.001   
Elevation − 0.002 2.47E-04 <0.001 − 0.001 2.74E-04 <0.001   
Distance − 1.43E-04 2.96E-06 <0.001 − 1.32E-04 3.07E-06 <0.001   
Intersection 0.029 0.005 <0.001 0.037 0.006 <0.001   
Speed − 0.004 0.001 <0.001 − 0.003 4.24E-04 <0.001  

Bikeway Bikeway- Other Reference        
Cycle tracks 0.386 0.035 <0.001 0.372 0.035 <0.001   
Bicycle lane 0.338 0.014 <0.001 0.327 0.015 <0.001   
Shared way 0.329 0.024 <0.001 0.301 0.026 <0.001   
On-Street Bikeway 0.142 0.007 <0.001 0.135 0.007 <0.001  

Roadway Road Type- Other Reference        
Skeletal roads         
Arterials roads 0.169 0.012 <0.001 0.174 0.013 <0.001   
Collectors 0.201 0.009 <0.001 0.206 0.010 <0.001   
Urban boulevard 0.342 0.015 <0.001 0.335 0.018 <0.001   
Neighborhood boulevard 0.511 0.018 <0.001 0.445 0.021 <0.001  

Sidewalk Sidewalk 0.084 0.005 <0.001 0.069 0.005 <0.001 
Random-effects Parameters          

Var(cons)-community-level 0.192 0.017 <0.001 0.198 0.019 <0.001   
Var(cons)-segment-level 0.128 0.001 <0.001 0.119 0.001 <0.001   
Measures for Model Evaluation        

DIC   26204.04   21339.97    
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segments are boundaries of multiple communities, which causes the 
boundary problem, the MMMM is used to deal with this problem by 
assigning equal weight to communities that are neighboring to the same 
road segment. 

As in many cases, e-scooters are treated as bicycles and are allowed 
to be ridden in the same infrastructures as bicycles. So, we can explore 
whether e-scooters and bicycle riders share the same road environment 
preference, which is beneficial to the design of the regulation rule for the 
two modes. By analyzing the impact of attributes of road segments on 
ETV, we found that the density of trees and the density of street lights of 
the road segment are positively related to the ETV. The segments with 
exclusive bicycle facilities are usually associated with higher ETV. Not 
only the category of the roadway but also the speed limit of the road 
segment influence ETV: e-scooter is less ridden on road segments with 
high traffic volume and high vehicle speed. There is also a significant 
positive correlation between the existence of sidewalks and ETV. 
Regarding the road facility preference of bicyclists, previous studies 
showed that bicyclists prefer to ride on road segments with more 
exclusive facilities (e.g. paths or cycle tracks), lower vehicle speed, and 
lower traffic volume (Buehler and Dill, 2016; Hood et al., 2011; Rose 
and Marfurt, 2007; Winters and Teschke, 2010). It shows that e-scooter 
users and bicyclists have similar preference on roadway facilities. 
Moreover, modeling results at the community level show that the ETV is 
positively related to the density of bus stops and LRT stations in the 
surrounding community, which indicates that e-scooters could serve as a 
transfer mode for transit to solve the “last mile problem”, just as a bi-
cycle. These conclusions, to a certain extent, indicate that bicyclists and 
e-scooter riders have a similar preference on the road environment. 

The study also has a few limitations. First of all, limited by the cross- 
sectional research design, the relationship between the ETV of the road 
segment and attributes of the segment that we identified should be 
regarded as correlation instead of causality. Future research should use 
longitudinal data to delve deeper into the topic and reach a more 
persuasive conclusion. Another way to investigate this topic is to 
construct the route choice model to explore how road features influence 
e-scooter riders’ choice of the route that is composed of multiple road 
segments. This type of study could potentially provide more insights into 
this topic. Despite these limitations, this study is still one of the first 
studies that try to uncover the road features that are favored by e-scooter 
riders and could provide a glowing reference for transportation engi-
neers to design road infrastructure that is more friendly to e-scooter 
users and for government agencies to determine what type of road or 
lane that e-scooters should be ridden on. 
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