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Abstract— Recent studies have demonstrated the great success
of graph convolutional networks in short-term traffic forecasting
(e.g., 15-30 min ahead) tasks by capturing dependencies in road
network structure. Based on these models, long-term forecasting
can be achieved by two approaches: (1) recursively generating
a one-step-ahead prediction and (2) adapting the models to
sequence-to-sequence (seq2seq) learning. However, in practice,
these two approaches often show poor performance in long-term
forecasting tasks. The recursive approach suffers from the error
accumulation problem, as the model is trained based on one-step-
ahead loss. On the other hand, seq2seq shows convergence issues
that limit its application. To address the issues for long-term
forecasting, in this paper, we propose a universal framework that
directly transforms any existing state-of-the-art models for one-
step-ahead prediction to achieve more accurate long-term fore-
casting. The proposed framework consists of two components—
a base model and a bias block. The base model is assumed
to be a well-trained state-of-the-art one-step-ahead forecasting
model, and the bias block is constructed by a spatiotemporal
graph neural network composed of gated temporal convolution
layers and graph convolution layers. The base model and the bias
block are residually-connected so that we can substantially reduce
the training complexity. Extensive experiments are conducted
on existing benchmark datasets. We experiment with several
state-of-the-art models in the literature as base models, and our
results demonstrate the ability of the proposed universal frame-
work to greatly improve the long-term prediction accuracy for
all models.

Index Terms— Traffic prediction, spatiotemporal graph
neural network, gated convolutional network, residual
connection.

I. INTRODUCTION

RAFFIC forecasting is a critical component of intelli-
gent transportation systems (ITS) [1]-[4]. Accurate and
reliable traffic forecasting benefits a wide range of agents
from individual drivers, to commercial organizations, and to
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Fig. 1. An example of error accumulation. In this test, the spatiotemporal
graph neural network [17] is tested on PeMS.

transport authorities. With recent advances in data acquisi-
tion technology, it becomes increasingly important to exploit
the spatiotemporal patterns embedded in large-scale data to
improve traffic forecasting. Deep learning has shown clear
advantages in its ability of capturing complex nonlinear rela-
tions in data and utilizing latent features without tricky feature
engineering. Generally, Graph Neural Networks (GNNs) and
temporal deep learning models such as Long Short-Term
Memory (LSTM) and Gated Convolutional Neural Networks
(Gated-CNNs) are employed to capture spatiotemporal pat-
terns in traffic data [5]-[11].

Based on these deep learning models, there are two
general two approaches for multi-step traffic forecasting,
namely: iterative multi-step forecasting and sequence-to-
sequence (seq2seq) based forecasting [12]-[16]. However,
these two approaches have some major limitations, especially
when it comes to long-term traffic forecasting (over 30 min in
lead time). The central idea of iterative multi-step scheme is
to iteratively feed the output of current prediction as an input
into the subsequent prediction. This idea is widely adopted by
many state-of-the-art models [17]-[19]. However, the iterative
use of previous results leads to diffusion and accumulation of
prediction errors throughout the whole process. Consequently,
prediction errors of the said methods grow substantially
with the length of prediction horizons. Empirical experiments
suggest a sharp increase in errors as the prediction horizon
passes 30 minutes, as illustrated in Figure 1. The seq2seq-
based models directly produce sequences of multi-period
predictions [20]-[24] based on the sequences of historical
ground truth. Seq2seq models are typically computationally
expensive to train, largely due to the convergence problems

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: McGill University. Downloaded on July 21,2022 at 00:59:08 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-3322-1814
https://orcid.org/0000-0001-9488-0712
https://orcid.org/0000-0002-6985-0025
https://orcid.org/0000-0003-3208-6016

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2

400~

— Seq2Seq
350 — non-Seq2Seq
of, | | | | |
0 200 400 600 800 1000
Iteration

Fig. 2. Loss lines of the seq2seq-based model and iterative multi-step

forecasting model. Both structure and parameter sizes of their input layers
and intermediate layers are as same as the spatiotemporal graph convolutional
network [17]. The loss of seq2seq have been divided by 24 because the final
output channel is 24, while the output for non-seq2seq model is one.

rooted in the high complexity of gradients computations when
updating model parameters. The complex gradients, even
worse with gradient vanishing, make the model prohibitively
expensive to train [25]. And enlarging a model is likely to
worsen the performance because of the increased likelihood of
converging to the local optima. As an example, Figure 2 shows
the learning curves of deep learning-based traffic forecasting
models under competing prediction schemes. It can be seen
from Figure 2 that the seq2seq-based model takes more
iterations to converge, with a training loss consistently higher
than that of the non-seq2seq model.

To address the above issues, we propose a universal
framework free of convergence problem and the associated
error accumulation. The framework comprises a base model
and a bias block. The base model, used to generate the
base prediction, can be any well-designed/trained one-step-
ahead forecasting model keeping its all original structure
and parameters. The bias block, used to generate a bias
sequence of following time steps, is constructed based on
spatiotemporal modules composed of both Gated-CNNs and
GNNs. The proposed framework can be regarded as dividing
a complex seq2seq-based model into two parts. One part
is replaced by a well-trained iterative multi-step forecasting
model, while the other is a bias block with lower complexity.
Instead of training an entire complex seq2seq-based model,
we only need to train the bias block with a considerably
less complex optimization space in the proposed framework,
thus the convergence problem is resolved. Additionally, the
accumulated errors of the base model are corrected by the
bias block. More qualitative explanations on the proposed
framework’s effectiveness are detailed in section III-D. Empir-
ical evidence suggests many state-of-the-art traffic prediction
models work well under the proposed framework. According
to our comparative tests of STGCN [17], DCRNN [18], Graph
Wavenet [26], and ASTGNN [27] on PeMS and META-
LA dataset, models enhanced by the proposed framework
clearly outperform their counterparts (i.e., base) for prediction
horizons from 30 min to 120 min.

To summarize, our contributions in this work are as follows:

« We propose an effective universal framework to improve

the long-term prediction performance of any well-trained
existing prediction model with no substantial changes.
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o« We design a bias block composed of temporal Gated-
CNNs and GNNs. The bias block is able to increase
state-of-the-art models’ pattern capturing ability with few
training penalty.

« We empirically demonstrate the effectiveness and gen-
eralizability of the proposed framework by conducting
numerical experiments of traffic speed prediction on
large-scale real-world data.

The rest of this paper is organized as follows. We first intro-
duce the preliminary knowledge in Section II. The proposed
framework is detailed in Section III. Section IV provides the
design and setup of the experiments of the proposed frame-
work. Section V concludes the paper with closing remarks and
discussion on future work.

II. PRELIMINARY

In this section, we first introduce the two forecasting
schemes. Then we detail the graph convolution which lies as
the foundation of most state-of-art traffic forecasting models.
Then, we introduce the dilated convolution that is able to
model the temporal sequence precisely and efficiently.

A. Sequence-to-Sequence and Iterative Multi-Step Prediction

One step traffic prediction can be summarized as

gt*+1 :f({gt,gt—l,~-~gt—(H—l)},(D)» (D

where G, = {V;, &, W} denotes the graph-structured traffic
condition at time step f, consisting of dynamic traffic infor-
mation in vertices V;, edge set £, and a weighted adjacency
matrix W € RN and G | denotes the prediction result
at time step ¢ + 1. We use f to denote the prediction model
parameterized by @, with H being the number of historical
records used in the prediction model.

There are two main schemes for multi-step forecasting. The
sequence-to-sequence (seq2seq) forecasting, which directly
generates multi-step predictions, can be formulated as

{g;JrT’gtinl""’gtil} = f({gf’gf—l’-~-gtf(H71)}>(D)’
()

where T is the prediction window and assumed 7 < H here.
Different from directly generating multiple predictions as
seq2seq, the iterative multi-step forecasting, which generates
one prediction first and then feeds the prediction into the model
to generate the subsequent prediction, can be formulated as

,*+1 =f ({gt, Gr—1,... gt—(H—l)} > (D) >
Fo= {85 G G-}, @),

r=r ({gt*+T—1’ Glyr—ns - gt*f(HfT)} ’ (D) :

Most state-of-the-art traffic forecasting models (e.g., [17],
[18]) utilize the iterative scheme, which is easy to train and
converge. However, as mentioned previously, the scheme is
vulnerable to the error accumulation problem in long-term
forecasting.
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B. Convolutions on Graph

Considering that traffic data are collected from irregular
sensor networks (i.e. loop detectors deployed across the road
network) and the spatial correlations among different sensors,
the graph can be a good representation of traffic data. In this
section, we introduce the graph convolution operation to
capture spatial patterns embedded in the traffic data.

A common approach for graph convolution is to work in the
spectral domain with graph Fourier transforms [28], which is
referred to as “spectral graph convolution”. The spectral graph
convolution is defined as

@i, x=0(L)x=0 (UAUT) x=U0 AU x, @&

where %, denotes the spectral graph convolution, x € R"
denotes a input signal, ® der}otes pa}rameters of graph con-
volution kernel, L = I, — D"2WD™2 = UAU” denotes the
normalized graph Laplacian (/,, represents an identity matrix,
W € R™" represents the adjacency matrix, D € R™*"
represents the diagonal degree matrix with D;; = i Wij),
U € R™" denotes the matrix composed of eigenvectors of
L, and A € R™" denotes the diagonal matrix composed of
eigenvalues of L. In addition, the filter ® (A) is a diagonal
matrix too.

By the definition in Eq. (4), the graph convolution between
the graph signal x and the kernel ® is transformed to the multi-
plication between the kernel ® and graph Fourier transformed
signal UTx in the graph spectral domain [28]. However,
the computational complexity of the above spectral graph
convolution operation is very expensive—QO (nz) To simplify
the spectral graph convolution and reduce parameters, Cheby-
shev Polynomials approximation [17] is often used, which
approximates kernel ® by a polynomial of A:

K—1
O (A~ D oAk, )
k=0

where 6 € RX is a vector composed of polynomial coefficients
and K is the graph convolution kernel size.

Generally, graph convolution kernels are approximated by
Chebyshev polynomial in a truncated form, which is defined
as

K—1
0 (A) ~ Z OTx (A), (6)
k=0

where Tj (x) denotes Chebyshev polynomial, scaled A =
2N/ max — In, and A4y is the largest eigenvalue. Then the
spectral graph convolution in Eq. (4) becomes

K—1
Oy x =0 (L)x~ > OTi(L)x. (7
k=0

To further reduce the complexity, the order k is generally set
to 1 and assume /.,y & 2 empirically. Thus, we have

Ox, x ~bGyx +6; (7)x
¢ AmaxL — I

~ fox + 0, (D*%WD*%)x, (8)
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Fig. 3. An example of dilated convolutions [30]. Dilation factors d are equal
to 1,2,4 and the convolutional filter size k = 2.

where 6y and 0 represent kernels sharing the same parameter,
ie, 80 = 0 = 6, to improve the training efficiency.
With the above Chebyshev polynomial approximation, the
computational complexity of spectral graph convolution is
reduced to linear O (n).

C. Dilated Convolution

Generally, the temporal sequence modeling and analysis
is synonymous with recurrent neural networks (RNN), e.g.,
LSTM and GRU. Most existing deep learning-based traffic
prediction works [29] are based on RNN. Yet recent studies
indicate that CNNs can outperform recurrent architectures on
sequence and time-series modeling [30]. Compared with RNN-
like models, temporal convolutional network (TCN) is not
only more accurate but also computationally cheaper. In this
section, we introduce the basic knowledge and architecture
of TCN.

Different from traditional CNN, TCN requires two strict
assumptions: 1) the length of TCN outputs is as same as inputs
and 2) no future information is leaked into the past. To satisfy
the aforementioned two conditions, a 1D fully-convolutional
network (FCN), of which the hidden layer has the same length
as the input layer, is applied in TCN. Besides, TCN utilizes
zero padding to keep the length of subsequent layers equal
to the length of previous layers. In addition, the TCN applies
causal convolutions, where output at time ¢ is computed only
from elements from time ¢ and earlier. Overall, TCN [30] can
be formulated as

TCN = 1D FCN + causal convolutions. )

However, the basic architecture of TCN cannot be expanded
to a long history size effectively, because the depth of the
network on causal convolution operations increases signifi-
cantly with the length of the historical sequence to process.
Extremely large convolution filters, which are computationally
expensive, are needed to analyze long time series. To process
the long time series both effectively and efficiently, the dilated
convolutions are introduced in [30] (see Figure 3). For a 1-D
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Fig. 4. The overall structure of the universal framework.

sequence input x € R” and a filter f : {0,...,k —1} —> R,
the dilated convolution operation F' is defined as
k—1

F(s) = (g ) () = D f () - Xo—ais

i=0

(10)

where s denotes an element in the sequence, d denotes the
dilation factor, k denotes the convolutional filter size, %4
denotes the dilated convolution, x denotes the input, and s —d-i
indicates the direction of the past.

As shown in Figure 3, a fixed skip operation between every
two adjacency elements is introduced in the dilation. When
d = 1, dilated convolutions becomes the same as simple causal
convolutions. When we use larger dilation factors, the dilated
convolution’s top level output is able to represent a wider range
of inputs and convolution filters’ sizes are reduced compared to
directly applying the causal convolution operations. Therefore,
dilated convolutions greatly expand TCNs’ receptive field.
Compared with enlarging the filter size k, increasing the
dilation factor d is a more effective and efficient way to mine
long historical sequences.

III. METHODOLOGY

In this section, we first introduce the overall framework
followed by the residual connection between the base model
and bias block. Then, the design details of the bias block
are illustrated. Following the explanation of the framework
design, the reason why the proposed framework can fill in
the aforementioned knowledge gap and enhance the long-term
prediction ability of current forecasting models is discussed.
It should be noted that the proposed framework does not
modify any internal structure or parameter of the existing well-
trained base model. Furthermore, unlike fusion models [31],
[32], we restrict model inputs to those used by the base
model without introducing external information (e.g., like
daily/weekly/monthly periodic patterns). The purpose is to
examine whether the improvement in long-term prediction
does come from the novel framework design.
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A. Overview of the Universal Framework

Figure 4 shows the structure of the proposed universal
framework for long-term forecasting. The base model is a
well-trained forecasting model (e.g., a state-of-the-art model)
to generate preliminary prediction. It should be noted that only
one-step-ahead prediction is applied when using the existing
traffic forecasting model as the base model. The bias block
is used to correct the long-term prediction error of the base
model and consequently improve the base model’s long-term
prediction performance.

Both the base model and the bias block share the same input.
Different from the iterative multi-step process as in Eq. (3)
and the seq2seq-based forecasting as in Eq. (2), the universal
framework integrates outputs of both the base model and bias
block:

G re - Gt = ({9, G-}, @) + B, (11

where f denotes the well-trained base model parameterized by
@, B denotes the bias sequence and B = {B;4+7, ..., Bi+1} =
f ({Q,, . ..g,_(H_l)} , CD/), and f’ denotes the bias block
neural networks parameterized by ®’. Parameters @ of the
base model are available since the base model is already
well-trained. Thus, the framework only optimize @"*—neural
network parameters for the bias block:

(D/* = argmin Opgse + f/ ({gt, e gt—(H—l)} > (D/) — Lirue,
@/
12)

where Opase = f ({Gr, ... Gi——1)}) denotes the output of
the base model and L e = {Gi41,...,Gi+7} denotes the
ground truth in the training dataset.

We would like to reiterate that both structures and para-
meters of the base model are fixed all the time—the training
process of the bias block does not affect the parameters of the
base model. The connection of the base model and the bias
block is a type of “residual connection” [33]. The advantage of
training a deep learning model with this kind of connection is
that the separated part are likely to be merged to be better than
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the original one. In other words, with the residual connection,
the proposed framework can generate predictions no worse
than the existing traffic forecasting model as the base model.
An extreme example is that the bias block’s outputs are forced
to O consistently and then the final output of the framework is
just that of the base model. The residual connection guarantees
the lower bound of the proposed framework’s performance and
the bias block if carefully designed could act to correct the
long-term prediction bias to a large degree.

The detailed structure of the bias block is shown in Figure 4,
consisting of three spatiotemporal modules, and an adjacency
matrix generator used to provide the adjacency matrix to graph
convolution operations.

B. Bias Block—Spatiotemporal Module

All three spatiotemporal modules share the same structure
of a temporal layer and spatial layer. The temporal layer is
composed of a dilated TCN with a gated mechanism. Gated
mechanisms have proved to be powerful to control information
flow through TCNs’ layers [26]. Specifically, we utilize the
gated linear unit (GLU) to construct the gated mechanism.
The output of GLU, x’, is computed as

X =T®x=(U+Ckx)Oac(V), (13)

where I' denotes the 1-D convolution kernel, ® denotes the
1-D convolution, x denotes the input to the temporal layer,
[U, V] denotes the set of two input, which are split in half
of same size of channels and fed into the gate mechanism,
of TCN [30], © denotes the element-wise Hadamard prodoct,
C (x) denotes sampling the input channels to be the same
as the half of output channels of TCN, which serves to
balance dimensions of two sides in the residual connection,
and o (x) = —— denotes the sigmoid function. The two

14e—*
intermediate outputs, [U, V], are computed as

U=01xxy+b

(14)
V=0,xxy +¢,

where ®1 and ®; denote parameters of convolutional filters,
b and ¢ denote parameters of the bias, x denotes the dilated
convolution operation introduced in section II-C, xy; denotes
the first half of inputs, and xy denotes the rest half of inputs.

The output of the temporal layer is then fed into the spatial
layer, which uses the graph convolution operation delineated
in section II-B to capture the dynamic similarity between
different vertices, and hidden/non-linear spatial patterns inside
the traffic data. The output of the spatial layer, s, is computed
as

s:@)*gx’z(a(z,)x/, (15)

where L; denotes the truncated expansion of the gener-
ated adjacency matrix by the generator f” and L, =
f ({g,, . Q,,(H,l)} , (I)”). Also, the skip connection based
on residual network [33] is applied in the spatial layer
to improve the effectiveness and efficiency of the training
process.

The end output of the whole spatiotemporal module is
o = x + s (i.e., input to the temporal layer + output of the

spatial layer), which is then fed into the next spatiotemporal
module. The output of the third spatiotemporal module is fed
into a 2D convolutional layer to get the final output of the bias
block B.

C. Bias Block—Adjacency Matrix Generator

Adjacency matrix plays a critical role in extracting spatial
information for graph convolution layers. Here we introduce
three different approaches to generate the adjacency matrix.
First, the adjacency matrix can be computed by the distance
between different vertices as in [17]:

2 2

w;i; = ex _4 ] i and _4 >
ij p p B i # j and exp 2] =€ (16)

0, otherwise,

where w;; denotes the weight between sensors i and j,
d;j denotes the distance between two sensors, o and € are
hyperparameters controlling the distribution and sparsity of the
adjacency matrix W, which are set to 10 and 0.5, respectively,
following STGCN [17]. It is important to note that the method
as in Eq. (16) requires the prior knowledge like network
distance, and the computed matrix is fixed.

Second, the adjacency matrix can be derived directly
from training data, just as the idea proposed in the Graph
Wavenet [26]. This method requires no prior information, and
the adjacency matrix is fixed after the training process.

The aforementioned settings overlook a plausible possibility
that spatial correlation might be time-variant (i.e., varies over
time) — for example, two sensors may look very similar
in midnight but show substantial difference during morning
peaks hours. To characterize the time-varying effect, the third
approach is to utilize one more spatiotemporal module to
generate the adjacency matrix corresponding to the dynamic
input, which is named as temporally dynamic adjacency
matrix [34]. This method requires no prior information, and
it can generate the dynamic matrix under different traffic
conditions. The effects of the aforementioned three adjacency
matrix generators are analyzed in our numerical experiments.
We refer to these three approaches as “Fix”, “Com” and
“TemD”, respectively, in the remainder of this paper.

D. Qualitative Effectiveness Analysis

This section qualitatively explains why the proposed frame-
work would outperform classic seq2seq and iterative multi-
step forecasting. In an ideal situation, the performance of
one deep neural network can be improved by increasing
its scale and complexity, because a larger network has a
larger capacity to capture more hidden patterns [35]. However,
in practice, training DNNs with complex searching spaces and
large numbers of parameters is extremely difficult, mainly
because high-dimension parameters lead to serious gradient
vanishing [25], [33] and the model tends to converge into
local optima. In fact, simply expanding neural networks cannot
always improve networks’ performance and even a severe
accuracy drop.

Adding the proposed framework to a well-trained base
forecasting model can overcome this issue. The framework
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combining the base model and the bias block actually is a
wider model. During the new training process, parameters of
the base model are fixed and they provide a good initialization
to update the left bias block. Training the bias block directly
with simple and clean structures also becomes a much easier
task. Moreover, the residual connection guarantees the bias
block will not cause accuracy drop of the base model [33],
[36]-[38]. Taken together, the proposed framework adds to
the base model’s complexity without few training penalties,
which will lead to better performance in comparison with the
original base model. Compared with training a larger seq2seq
DNN-based forecasting model, it is less likely to encounter
the gradient vanishing problem when training the proposed
universal framework. In fact, considering that most state-of-
the-art DNN-based forecasting models already demonstrate
high degree of complexity [26], [34], directly training a larger
model will be extremely challenging, time consuming, and
even impossible. The proposed framework addresses these
challenges by expanding state-of-the-art models (i.e., base),
and then transform these models to an easy-to-train seq2seq
model with improved long-term forecasting capability. In addi-
tion, compared with iterative multi-step forecasting models,
there is no recursive process in the new framework, which
ensures no error accumulation in the long-term forecasting.

IV. EXPERIMENT

In this section, we present the empirical study of the
effectiveness and interpretability of the proposed framework.
In particular, we compare the performance of different adja-
cency matrix generators discussed in section IV-B. We also
interpret and visualize the results of the proposed universal
framework.

A. Setup

1) Datasets: Traffic Speed datasets used to verify the pro-
posed model are PeMS (Freeway Performance Measurement
System) and METR-LA. PeMS is collated by the California
Department of Transportation (Caltrans) with 12TB of data
collected from 35,000 sensors across the state of Califor-
nia since 1999. We use data of 228 road segments and
44 days in our experiments, as in the PeMS data used in
STGCN [17]. METR-LA contains traffic information from
loop detectors in the Los Angeles County highway [39].
We select data of 207 sensors and 4 months for our exper-
iments, as in DCRNN [18]. In addition, a traffic occupancy
dataset, PeMSO08 [40] collected from 170 stations in the
California Freeway Network, is applied.

2) Baselines: We use vector autoregressive model (VAR) as
a traditional base model and HA stands for historical average.
Four state-of-the-art deep learning-based models are tested as
advanced base models, including:

o« HA—historical average [18],

o STGCN—spatiotemporal graph neural network [17],

o DCRNN-—diffussion convolution RNN [18],

o GWNet—graph wavenet [26],

o ASTGNN—attention based spatialtemporal graph neural

network [27].
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TABLE I
COMPARISON ON DIFFERENT ADJACENCY MATRIX GENERATORS

PeMS (60 / 90 min)

Model MAE MAPE (%) RMSE TT(s)

STGCN 4247521 105971345 7.9479.54 N
Fix 3.83/4.14 941/1028 697/741 672
Com  390/420 934/10.19 688/740 864

TemD  3.87/4.06 9.16/10.06 6.81/7.28 3946

All base models are for single-step-ahead prediction. Our
experiments are carried out on Ubuntu 18.04 LTS with
tensorflow 1.18 and a Telsa V100 GPU.

3) Evaluation Metric: We choose MAE (Mean Absolute
Error), MAPE (Mean Absolute Percentage Error), and RMSE
(Root Mean Square Error) as key metrics to evaluate prediction
accuracy.

B. Comparison on Different Adjacency Matrix Generators

This subsection details the experiment of three adjacency
matrix generators detailed in section III-C, and then summa-
rizes their advantages and disadvantages. It should be noted
that all bias blocks except the adjacency matrix share the
same parameters in this test. The well-trained STGCN [17]
works as the base model and PeMS is utilized as the test
dataset.

We compare the performance of 60 min and 90 min traffic
predictions with different adjacency matrices, and results
are shown in Table I. STGCN denotes the default STGCN
model with iterative approach for long-term forecasting; “Fix”
denotes using STGCN as the base model in the framework
and the adjacency matrix in the bias block is computed
using Eq. (16); “Com” denotes the adjacency matrix in
the bias block is trained from training data; and “TemD”
denotes that the spatiotemporal module is applied to generate
temporally dynamic adjacency matrix. Besides MAE, MAPE,
and RMSE, the training time (TT) for the bias block is also
presented to evaluate the efficiency of different adjacency
matrix generators. As we can see, STGCN with a bias block
consistently outperforms the well-trained (base) STGCN for
long-term prediction (over 60 min), regardless the adjacency
matrix generator used. The three solutions show similar
performances; however, we can still see that the temporally
dynamic adjacency matrix outperforms the other two methods
in most cases. Computing the adjacency matrix from vertices’
distances is quick and easy, but this method only works when
traffic network typology information is available. Temporally
dynamic adjacency matrix provides an alternative solution
when network information is not accessible, and this approach
offers the best performance at the expense of computational
costs. As can be seen from TT, the computational cost for
“Com” (i.e., computing the adjacency matrix from data) is
close to that of “Fix” (i.e., computing a fixed matrix from
distance), while the cost of training the temporally dynamic
matrix generator is almost 5 times the simple solution. Based
on the above analysis, we choose to use the “Com” approach
in the following experiments to balance the effectiveness and
efficiency.
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Fig. 5. Visualization of different adjacency matrices.

Figure 5 visualizes different adjacency matrices. Compared
with the fixed matrix computed based on the distance (see
Figure 5(a)), the other two solutions can capture correla-
tions between stations away from each other. The temporally
dynamic matrix generator can generate different matrices
based on different inputs (see Figure 5(c,d)).

C. Performance Comparison

Next, we empirically examine the effectiveness and gen-
eralizability of the proposed framework. Iterative multi-step
forecasting and seq2seq versions are trained by the following
respective loss functions

lossiterative = II.f ({gr, e gtf(Hfl)}) = Gr+1ll2, (17)
lossSseqrseq = II.f ({gr, s gtf(Hfl)}) - {gr+T, s gt+l)} ll2.
(18)

Note that all the baseline models share the same structures
between the two versions. For instance, the only difference
between the iterative STGCN and the seq2seq STGCN is the
channel of their output layers. Additionally, the well-trained
iterative multi-step forecasting models are used as the base
model in the proposed framework.

Table II presents the detailed performance of tested
models. We test three variants for each baseline model.
Taking STGCN [17] as an example, “STGCN” means
the default model that achieve multi-step forecasting in
an iterative approach without introducing the bias block;
“STGCN(S)” denotes the seq2seq version, which achieves
long-term forecasting in a direct way without the bias block;
finally, “STGCN+" follows the proposed universal framework,
in which the base model is a well-trained single-step-ahead
STGCN. Again, it should be noted that neural network
parameters of the base model in “STGCN+" are the same
as in “STGCN”, and there is no change in the base model
used in the proposed framework. The same notation applies
to VAR, DCRNN, GWNet, and ASTGNN. When comparing
different models with simple HA baseline, we can clearly
see that all models fall prey to error accumulation in long-
term (multi-step-ahead) forecasting tasks. For example, most
baseline models perform worse than HA for 90 min and
120 min ahead predictions. This is not surprising due to:
(1) Traffic time series are often strongly non-stationary with
clear periodic patterns at different scales (e.g., daily/weekly).

50 100 150 200
(c) TemD-1

50 100 150 200
(d) TemD-2

A large body of literature shows that traffic time series
demonstrate inherent low-rank patterns and can be modeled
with a third-order sensorxtime of dayxday tensor structure
(see e.g., [41], [42]). Therefore, we would expect the long-term
(> 2 hours) structure of traffic time series to be dominated by
the global patterns such as daily average. (2) Deep learning
models (STGCN, DCRNN, GWNet, ASTGCN) are trained to
better characterize the local/micro patterns and variations in
the data, using only local information as input and output.
This is why these models often provide the best short-
term prediction accuracy but fail to compete with HA for
long-term forecasting (i.e., > 1 hour). Therefore, we limit
the long-term temporal range in our analysis to 2 hours.
Given the strong spatiotemporal regularities in traffic time
series, we would suggest to use explanatory models (such
as historical average or other regression models) instead of
local time series forecasting models for prediction beyond
2 hours.

We first compare the base models with their seq2seq “(S)”
and universal “4” counterparts. We can see that the proposed
framework shows comparable performance to the base model
for 30-min-ahead prediction; for long-term (>30 min) predic-
tion, the universal framework with bias block demonstrates
substantial improvement, and works well even for 2-hour-
ahead prediction. The results clearly show the superiority
of using the bias block to reduce the accumulated errors in
the base model. It is also interesting to see that the long-
term forecasting performance of seq2seq is essentially worse
than applying the default base model in an iterative manner.
A possible reason is that even with the same input layer
and hidden layers, the optimization space of the seq2seq
based model is T (i.e., the output channel of the seq2seq-
based model) times as large as that of the base model.
As a result, seq2seq has a much more complex optimization
space, which inevitably causes convergence problem and a
much higher possibility of unfitting. This might be the key
reason that many current state-of-the-art forecasting models
are iterative multi-step models despite the error accumulation
issue [17], [18], [23].

As previously discussed, the proposed framework can
address this issue by adding a less complex bias bock
as the residual connection [33] to the well-trained fore-
casting models, so as to correct the base model’s fore-
casting bias. Compared with directly training a large scale
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TABLE II

COMPARISON RESULT IN PEMS AND META-LA TO PROVE THE EFFECTIVENESS AND GENERALIZATION
OF THE PROPOSED FRAMEWORK. BEST RESULTS ARE HIGHLIGHTED IN BOLD

Model

PeMS (30 / 60 / 90 / 120 min)

MAE MAPE (%) RMSE
HA 4.60 12.50 8.05
VAR 4.84/6.06/6.71/7.29 11.33/14.10 / 15.44 / 16.74 7.04/8.63/79.38/10.08
VAR(S) 4.43/6.13/7.01/7.54 11.08 / 14.74 / 1590 / 17.98 6.97 /8.71/9.85/ 11.56
VAR+ 4.43/5.05/5.53/621 11.00/11.59 / 13.01 / 13.44 7.02/7.75/8.94/9.71
STGCN 3.17/424752176.15 7.70 / 10.59 / 13.45/ 16.45 59377957954/ 11.04
STGCN(S) 3.75/4.83 /6.02 / 6.96 8.58 /11.02/15.15/16.71 6.43/8.68/10.15/11.82
STGCN+ 3.24 / 3.87 / 4.06 / 4.70 7.57/9.16 / 10.06 / 11.09 5.60 / 6.81/7.38 /795
DCRNN 335/4.41/5.62/6.33 8.03 /10.80 / 13.78 / 17.00 6.11/8.18/9.92/11.59
DCRNN(S) 3.32/4.38/5.77/6.51 8.10/10.75 / 14.03 / 17.59 592782171075/ 12.24
DCRNN+ 3.30 /3.93 /4.28 / 4.75 7.80/9.31/10.35/ 11.12 5.78 / 6.88 / 7.60 / 8.03
GWNet 3.20/3.77 /490 / 5.54 7.67 /928 /12.17/ 12.16 5.85/6.86/8.60/9.75
GWNet(S) 3.75/4.08/4.97/5.83 8.03/9.65/13.10 / 15.35 6.17 /7.00 / 8.84 / 10.66
GWNet+ 3.22/3.58/4.22/4.54 7.70 /9.10 / 9.97 / 10.81 590/6.75/7.30 / 7.85
ASTGNN 3.22 /38574727531 7.78 /9.35/11.06 / 11.85 5.91/6.87/8.02/9.42
ASTGNN(S)  3.47/4.15/4.75/5.54 791/9.69/11.22/11.89 6.10/7.07 /8.14/9.73
ASTGNN+ 3.25/3.63/4.18/4.39 7.88 /9.11/9.54 / 10.15 5.91/6.80/7.16 / 7.64
Model METR-LA (30 / 60 /90 / 120 min)
MAE MAPE (%) RMSE
HA 4.16 13.0 7.8
VAR 541/652/831/10.19 12.07/15.80/18.58/21.34 9.13/10.11 / 14.40 / 18.23
VAR(S) 5.41/652/831/10.19 12.07/15.80/18.58/21.34 9.13/10.11 / 14.40 / 18.23
VAR+ 522/593/6.74 /795 11.38/14.47 / 16.66 / 18.05  8.81 / 9.80 / 12.07 / 15.56
STGCN 3.47/459/5.60/6.73 9.57 /1270 / 14.92 / 17.07 7.24/9.40/11.84/13.98
STGCN(S) 3.58/482/593/17.05 9.95/12.94 /1522 / 17.50 7.65/991 /1233 /1445
STGCN+ 3.55/4.50/5.12/5.31 9.86 / 12.55 / 13.01 / 15.00 7.33/9.38 /9.94 / 10.86
DCRNN 3.15/3.60/4.17 /5.20 8.80/10.50 /7 13.11 / 15.95 6.45/7.60/8.65/9.72
DCRNN(S) 3.11/3.58/4.23/5.44 8.65/10.41/13.10 / 16.07 6.22/7.56/8.81/10.12
DCRNN+ 3.22/3.57/3.96 / 4.73 8.82/10.14 / 12.05 / 13.01 6.60/7.21/8.03/9.17
GWNet 3.07/3.53/4.10/4.75 8.37/10.01 / 12.85/ 14.43 6.22 /7.37/8.5479.01
GWNet(S) 3.25/3.78 /1 4.66 / 5.02 8.66 /10.59 /13.03 / 14.94 6.63/7.85/885/9.71
GWNet+ 3.18 /3.53 /3.95/ 4.38 8.58 /10.00 / 12.02 / 12.85 6.50/7.31/7.94 / 8.62
ASTGNN 3.15/3.59/4.01/4.56 8.40 / 10.14 / 12.43 / 13.97 6.40 /7.41/8.09 / 8.85
ASTGNN(S)  3.21/3.64/4.22/4.68 8.54 /1033 /12.86 / 14.05 6.49/7.55/824/9.04
ASTGNN+ 320/ 3.49 / 3.87 / 4.33 8.55/10.05 / 11.90 / 12.67 6.47/7.34 /790 / 8.49

seq2seq-based model (see GWNet(S) in Table II), we do
not observe any convergence issues when training the bias
block thanks to the desirable initialization from the well-
trained base model. In addition, the results in Table II
also suggest that the proposed framework works well
with different base models—including both deep learning
models and classical VAR—on different datasets, further
demonstrating the superior generalizability of the proposed
framework.

Panels (a), (b) and (c) in Figure 6 show examples of 90 min
prediction on PeMS, which compare the result of STGCN
with/without the proposed framework. Panels (d), (e) and
(f) show another set of examples on 90 min prediction on
META-LA with DCRNN as the base model. In the two sets
of examples, the top 30%, the top 50%, and the last 30% per-
formance of STGCN/DCRNN with the proposed framework
are shown. The comparison shows that predictions of STGCN
and DCRNN with the proposed framework are considerably
more smooth and closer to the ground truth. In addition, even
when the proposed framework does not work perfectly (e.g.,
see bottom-30% performance of Figure 6 (c) and (f)), it can
still help the base model outperform the original one. Overall,
the results strongly suggest the effectiveness of the proposed
framework.

The proposed universal framework is designed to improve
long-term forecasting accuracy. We next examine in detail the
effect of the proposed framework on short-term forecasting
performance (i.e., less than 30 min). We evaluate the MAPE
improvements with STGCN as based model for different
prediction horizons, from 5 min to 120 min and show the
results in Figure 7. As can be seen, the proposed framework
actually performs worse than the base model in short-term.
The results are not surprising as the seq2seq-based bias block
is trained for overall loss instead of the one-step-ahead loss
used in the base model. STGCN+ outperforms the base
model substantially starting from 60-min-ahead prediction.
This clearly demonstrates the effectiveness of the proposed
framework.

We next conduct experiments on the PeMSO08 traffic occu-
pancy data set [40]. Different from traffic speed data, traffic
occupancy often has stronger local variations and lacks of
consistent periodicity. Table III records comparison results
of different deep learning-based traffic occupancy prediction
models. Similar to the conclusion from experiments on traffic
speed prediction, we can see that the proposed framework can
improve the long-term prediction of different forecasting mod-
els. Due to the great variation and lack of consistent periodic
patterns in the occupancy data, the HA baseline fails to provide
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Fig. 7. MAPE improvement for STGCN+ compared with STGCN in PeMS
for different prediction horizon, from 5 min to 120 min.

comparable performance, and it is even worse than copying the
most recent observed values. This experiment on occupancy
forecasting further confirms the long-term improvement by
applying the proposed universal framework.

D. Framework Interpretability

We next present experiments interpreting the proposed
framework. In the following experiments, PeMS and STGCN
are used as the test dataset and base model, respectively.

Figure 8 shows the output of the bias block for 60-min
prediction. Here we show examples on Aug-24-2017 Thu
and Aug-26-2017 Sat. For each day, two examples, one for
morning peak hour (8:00 am) and the other at 8:00 pm, are
shown. The results clearly show that the added bias (i.e., B)
varies in different periods. As we can see, at non-peak hours,
most nodes in Figure 8(b,d) show an almost-zero bias, while
the added biases vary substantially for different sensors during
morning peak hours (see Figure 8(a,c)). Naturally, it is much
more difficult for the base model to forecast complex traffic

(e) Top-50% performance of DCRNN+

I I I I I I I
300 500 0 100 200 300 400 500

Long-term prediction results of different models for different datasets.

400
Time Time
(f) Bottom-30%  performance  of
DCRNN+
TABLE III

COMPARISON ON TRAFFIC OCCUPANCY
PREDICTION IN PEMS08

PeMS08 (60 / 90 / 120 min)

Model MAE RMSE

HA 85.63 108.45

DCRNN 178672253 728.19  27.80732.577 36.11
DCRNN(S) 18.13 /22.68 /2835  28.14 / 33.07 / 36.55
DCRNN+ 17.08 / 19.87 / 23.81  25.83 / 28.70 / 32.71
STGCN 18.02/23.61 /2947  27.83733.927 3858
STGCN(S) 18.90 / 24.77 /29.59  27.96 / 33.73 / 38.03
STGCN+ 17.22/20.87 / 2423 23.17 / 30.50 / 33.48
ASTGNN 1861722357 2774 28.16 7 32.43 7 37.61
ASTGNN(S)  18.90/23.18 /27.95  28.40/33.52 / 37.08
ASTGNN+ 17.14 / 18.81 /2093  26.76 / 30.04 / 32.24

conditions during peak periods. However, the proposed bias
block is able to mitigate the biases and improve the base
model’s forecasting under complex traffic conditions.

E. Verification on Different Bias Blocks

In Section III-B, we proposed a bias block composed of
dilated convolutional layers and graph convolutional layers.
In this section, three different designs are tested and compared
with the proposed one. These bias block designs are:

o VAR, a Seq2Seq-based VAR model whose parameters,
except the output channel, are as same as the base model
in Section IV-C. Its output channel is set to be the same as
the proposed bias block in Section III-B, which is equal
to the prediction horizon;

o Dilated CNN, a bias block composed of temporal layers.
All parameters, links, and structures are as same as the
proposed one, except there is not spatial layer;
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(a) Aug-24-2017 Thu, 8:00 am

(b) Aug-24-2017 Thu, 8:00 pm

Fig. 8. Bias block output in different timestamps.

TABLE IV

COMPARISON ON DIFFERENT BIAS BLOCKS.
THE MEASUREMENT IS MAE

Base (Bias Block)
STGCN (None)
STGCN (Proposed)
STGCN (VAR)
STGCN (Dilated CNN)
STGCN (GNN)
DCRNN (None)
DCRNN (Proposed)
DCRNN (VAR)
DCRNN (Dilated CNN)
DCRNN (GNN)

PeMS (30 / 60 / 90 / 120 min)
3.17/4247521/6.15
3.24/3.87/4.06 / 4.70
320/4.11/4.64/5.05
322/395/4.32/4.95
324 /414 /4.77/5.11
335/4.41/5.62/6.33
3.30/3.93/4.28 / 4.75
331/432/459/5.10
3.31/4.05/4.38/4.89
335/4.49 /487 /524

o« GNN, a bias block composed of spatial layers only.
Similarly with Dilated CNN, all settings are as same as
the proposed one, except no temporal layer.

In this experiment, STGCN and DCRNN work as the base
model and PeMS dataset is used. The comparative result is
shown as Table IV

From Table IV, it is evident that even with a simple design
of the bias block, the proposed framework can still improve the
long-term forecasting ability of the base model. As discussed
in Section III-D, the proposed framework can be regarded
as a wider forecasting model with a reasonable initialization.
It can provide better representations of hidden spatiotemporal
patterns with little extra computation penalty. This experiment
proves the framework to be a simple yet extremely effective
approach on improving current forecasting model in terms
of long-term prediction performance. The design of bias
block matters for the performance improvement. This study
is intended to focus on highlighting the effectiveness of the
proposed framework, how to design the optimal bias block
will be studied in the future work.

V. CONCLUSION
In this paper, we present a universal framework that can

enhance existing state-of-the-art short-term traffic models to
achieve better long-term forecasting accuracy. The proposed
framework consists of a base model and a spatiotemporal
neural network-based bias block. Any existing one-step-ahead
prediction model (not only deep learning-based models but
also classic traffic forecasting models such as VAR) can serve
as the base model, and the proposed bias block is comprised of

(c) Aug-26-2017 Sat, 8:00 pm

(d) Aug-26-2017 Sat, 8:00 am

three spatiotemporal modules with both temporal and spatial
layers. It should be noted that one does not need to change
anything in the base model; in other words, an existing well-
trained model can be directly integrated into the proposed
framework.

A major advantage of the proposed framework is it does not
suffer from convergence problems that undermine seq2seq-
based models. Combined with a well-trained base model,
the bias block is extended to a large seq2seq-based model
with little added complexity. Due to the extended variable
space, the proposed framework performs much better in
capturing hidden patterns than previous seq2seq-based models.
The framework is much easier to train because of its good
initialization from the well-trained base model as well as its
low complexity, which effectively addresses the bottleneck of
seq2seq-based models. In addition, the proposed framework
is also more advantageous than iterative multi-step models in
that the bias block resolves error accumulation problems by
adding biases to offset the errors. Moreover, the base model
guarantees a reasonably accurate prediction, and the bias
block, which cooperates with the base model by the residual
connection [33], can decrease the base model’s error and
will not lead to the accuracy drop. As a result, the proposed
framework can overcome both seq2seq-based models’ and
iterative multi-step models’ problems and thus perform better.

We acknowledge that this framework does not substantially
improve short-term prediction, which might be caused by over-
fitting. Short-term (less than 30 min) prediction is relatively
simple and does not need complex structures. The proposed
bias block increases the complexity, which is one possible
reason why the short-term prediction performance is not
increased like the long-term prediction. To achieve the best
forecasting performance, a sensible solution is to adopt the
default base model for short-term forecasting (< 30 min) and
switch to the proposed framework for long-term forecasting
(30—120 min).
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