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Spatiotemporal Traffic Data Imputation and Kriging
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Abstract— Missingness and corruption are common prob-
lems for real-world traffic data. How to accurately perform
imputation and prediction based on incomplete or even sparse
traffic data becomes a critical research question in intelligent
transportation systems. Low-rank matrix factorization (MF) is
a common solution for the general missing value imputation
problem. To better characterize and encode the strong spatial
and temporal consistency in traffic data, existing work has
introduced flexible spatial/temporal Gaussian process (GP) priors
to model the latent factors in MF framework, which also allows
us to perform kriging for unseen locations and virtual sensors.
However, learning the hyperparameters in GP kernels remains a
challenging task. In this paper, we present a Bayesian kernelized
matrix factorization (BKMF) model with an efficient Markov
chain Monte Carlo (MCMC) sampling algorithm for model
inference. By learning the kernel hyperparameters from their
marginal posteriors through a slice sampling treatment and
updating the latent factors alternatively with Gibbs sampling,
we achieve a fully Bayesian model for the spatiotemporally
kernelized (i.e., GP prior regularized) MF framework. We apply
BKMF on both imputation and kriging tasks, and our results
demonstrate the superiority of BKMF compared with state-
of-the-art spatiotemporal models. In addition, we also explore
the effects of different GP kernels in characterizing networked
spatiotemporal traffic state data.

Index Terms— Missing data imputation, kriging, Gaussian
process, low-rank matrix factorization, Markov chain Monte
Carlo.

I. INTRODUCTION

TRAFFIC state (e.g., speed/flow) is a typical type of
multivariate data that evolves over both space (e.g., on a

transportation network) and time [1]. Learning the spatiotem-
poral patterns from traffic data is essential in transportation
system analysis [2]. One of the most fundamental and common
issues in traffic sensing data is the “missingness” problem
due to various factors such as sensor failure/malfunctions or
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network communication errors. In addition, traffic state data
collected from emerging crowdsourcing and moving sensing
systems (e.g., Google Waze) is often naturally sparse due to the
limited spatial and temporal coverage. The missingness prob-
lem makes it difficult to use the data directly for downstream
applications that often require complete information, such as
traffic forecasting, route navigation, and travel time estimation.
Therefore, imputing missing values has been a critical task in
spatiotemporal traffic data analysis.

Traffic data collected from a sensing network can naturally
be organized into a multivariate time series matrix, with
each row representing a time series collected from a sensor.
In general, there are two types of “missing” patterns. The
first is random missing, where the time series observed from
a particular sensor contains missing values. This case of
missingness is often caused by sensor and communication
errors in the system. The second corresponds to the scenario
where no sensors are installed at a particular location (i.e.,
whole row missing), but readings from nearby sensors are
available for us to perform interpolation for the virtual sensors.
We refer to the estimation of these two types of missing values
as imputation and kriging, respectively [3], [4]. Given the
inherent global patterns observed in spatiotemporal data, latent
factor-based low-rank matrix factorization (MF) methods have
been widely used for missing data estimation [5]. However,
the standard MF framework [6] is invariant to row and
column permutation; thus, it does not account for the spatial
and temporal correlations in the data, which are essential
for data completion. To incorporate such local dependency,
various spatial or temporal regularized MF models have
been proposed. For instance, Rao et al. [7], Wang et al. [8],
Bahadori et al. [3] imposed spatial consistency using a graph
Laplacian regularization, Xiong et al. [9] modeled temporal
consistency using a local Markov structure, and Yu et al. [5]
captured temporal dependence through an autoregressive (AR)
regularizer. Although these regularization methods can encode
spatiotemporal correlations, one should note that the definition
of spatial and temporal correlation structure also plays an
ultimate role in model performance. For instance, most previ-
ous studies (e.g., [3], [10]) use a square exponential function
exp

�−dist(i, j)2/l2
�

to define link weight in an adjacency
matrix with a pre-specified lengthscale hyperparameter l;
however, the lengthscale l is critical in characterizing the
structure of spatial process, and should be carefully learned or
specified using extensive cross-validation. Similarly, in terms
of the temporal structure, a simple AR model is hardly able
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to capture both short-term (e.g., hourly) and long-term (e.g.,
daily/weekly) temporal correlations [11] of the data.

In spatial statistics and machine learning, Gaussian
process (GP) is a widely used tool to model spatiotemporal
data [12], [13]. The key idea of GP is to capture the complex
covariance between any pair of observations using a simple
kernel structure with only a few hyperparameters. In addition,
the probabilistic nature of GP also allows us to quantify
the uncertainty in the data. However, the main challenge
associated with GP models is the high computational cost
(O(n3) mainly because of the Cholesky decomposition of
the covariance matrix, where n is the sample size). In our
case, learning a GP for a M × N data matrix with no
missing values has a complexity of O(M3 N3). To address
the computational issue, Luttinen and Ilin [14] developed a
Gaussian process factor analysis (GPFA) model by combining
GP with MF in a single probabilistic model, in which separate
GP priors are introduced to model the spatial and temporal
factors, respectively. With the low-rank factorization scheme
and separate kernels, GPFA reduces the computational cost to
O(M3 D3 + N3 D3) when updating the factor matrices as a
whole, or to O(M3 D + N3 D) if columns of the latent factors
are updated separately, where D � (M, N) is a predefined
rank for MF (i.e., size of the latent dimension).

Despite the efficient structure, one main challenge with
GPFA is that the hyperparameters of the GP kernels — which
play a crucial role in model interpretation and performance —
are difficult to estimate. In GPFA [14], the authors proposed
to use variational Bayes approximation to infer the joint
posterior over latent factors. Based on these approximations,
kernel hyperparameters are estimated by maximizing the lower
bound of the likelihood of the corresponding factors. However,
this strategy assumes that the two factor matrices are inde-
pendent, which may decrease the estimation accuracy. More
importantly, since the kernel hyperparameters are estimated
conditioning on the latent factors, the strong relationship
between them is essentially ignored [15]. Such estimation in a
hierarchical GP model usually generates an extremely narrow
posterior distribution for the hyperparameters [16], [17], which
makes hyperparameter learning challenging.

In this paper, we present a GP regularized Bayesian
Kernelized Matrix Factorization (BKMF) framework by adapt-
ing the GPFA method developed in [14] to complete missing
values in spatiotemporal traffic data. To address the kernel
hyperparameter learning problem in GPFA, we compute the
marginal posteriors by integrating out the latent factors and
achieve the MCMC updates via slice sampling [18]. The fully
Bayesian framework allows us to exploit the spatiotemporal
correlations without prior knowledge. We show that our pro-
posed BKMF model can be effectively used for spatiotemporal
data imputation and kriging, even in the presence of large
amounts of missing values. Furthermore, the interpretable
kernels in BKMF provide a clear representation for real-world
spatiotemporal traffic patterns. The overall contribution of this
work is threefold:

1) We introduce GP kernel regularization into the MF
framework to model spatiotemporal traffic data. By plac-
ing flexible kernel priors over all columns of the latent

matrices properly, the spatial and temporal dependencies
among the data rows and columns can be well cap-
tured. The proposed model can perform imputation for
extremely sparse data (e.g., 95% data is missing) and
achieve complex spatiotemporal kriging.

2) We develop an MCMC-based fully Bayesian sampling
method for model inference, which is free from parame-
ter tuning. Through Gibbs sampling and slice sampling,
both the model parameters and kernel hyperparameters
can be efficiently updated. The Bayesian framework also
allows us to quantify the uncertainty of the estimation.

3) We conduct extensive experiments in terms of both
imputation and kriging tasks on two traffic data sets,
where the effectiveness of various GP kernels is also
explored. The completion results show the superiority
of BKMF over existing low-rank spatiotemporal analysis
models especially in the kriging scenarios.

The remainder of this paper is organized as follows. Sec. II
reviews related studies for spatiotemporal data imputation and
kriging, and also presents the key research challenge. Sec. III
illustrates the tasks/problems of this work and introduces the
formulation that incorporates spatial and temporal side infor-
mation into low-rank matrix factorization. Sec. IV presents the
proposed BKMF model and the MCMC algorithm for model
inference. In Sec. V, we apply BKMF on two real-world traffic
speed data sets for both imputation and kriging tasks and also
examine the effects of choosing different kernel functions.
Sec. VI summarizes this study and discusses some model
properties and future research.

II. RELATED WORK

Missing value imputation and kriging for spatiotemporal
traffic data are the two tasks discussed in this paper. Tradition-
ally, the kriging tasks are commonly addressed by GP-based
models. The low-rank structured models have also been widely
explored for spatiotemporal data completion problems.

A. Gaussian Process (GP) for Spatiotemporal Data Kriging

GP is a common approach to analyze spatiotemporal data,
particularly for the kriging tasks. Kriging estimates the time
series/signals of new locations by taking advantage of the
spatial correlations among the observed locations [19], where
the spatial dependency structure is modeled through a specific
covariance or variogram function [20]. In general, the data
are decomposed into a trend component and two residual
components—a spatial residual a GP with zero means and
the a pure error term (i.e., nugget effect). Depending on
the assumptions of the trend part, different types of kriging
methods are deduced, including universal kriging, ordinary
kriging, etc. These kriging models have been applied for
traffic data analysis, for example, to estimate annual average
daily traffic for unobserved locations [21]. However, kernel
functions need to be specified in classical kriging models,
and the kernel hyperparameter estimation is computation-
ally expensive. Recent research also extends spatial kriging
to spatiotemporal kriging, accounting for both spatial and
temporal correlations, such as in [22], [23]. However, these
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TABLE I

LOW-RANK MODELS FOR SPATIOTEMPORAL DATA ANALYSIS

studies generally extended the idea of variogram/covariance
modeling, which still needs domain knowledge and manual
effort. Although GP offers a framework for characterizing
complex spatiotemporal correlations, the main bottleneck for
real-world applications is the high computational cost.

B. Low-Rank Models for Missing Data Imputation and
Kriging

Low-rank factor models provide an alternative dimension-
ality reduction framework for missing data imputation of
large-scale spatiotemporal data sets. In default MF, the imputa-
tion result is invariant to the permutation of rows and columns
of the data matrix, which implies that the strong spatial and
temporal patterns are ignored. Therefore, the main idea of
low-rank spatiotemporal models is to introduce regularization
terms to account for spatial/temporal structure in addition to
the standard low-rank framework. In Table I, we briefly review
some existing models in the literature.

Most studies rely on graph-based regularization to encode
local spatial and temporal consistencies. Despite the simplicity,
there are several issues with these models. First, tuning the reg-
ularization parameters takes a lot of computing time. Second,
most studies define the edge weights in graph regularization
using a specific kernel structure; however, since the hyperpa-
rameters (such as lengthscale and variance in an exponential
kernel) are essential to the underlying processes, they need to
be carefully tuned instead of being assigned empirically. Third,
real-world spatial and temporal processes often cannot be fully
characterized using a graph structure. This is, for example, the
case with long-term periodic correlations and spatial connec-
tions described with geographical distances. AR modeling is
another popularly applied regularization way. However, the AR
regularized models that consider only temporal characteristics
cannot account for spatial patterns and therefore are not
able to deal with the kriging tasks. In addition to the GP
and low-rank structured completion methods, there also exist
missing data completion approaches using neural networks [4]
or other types of data such as video camera records and
GPS trajectory data [28] for traffic analysis. However, these
approaches usually require expensive computational resources.

It should be noted that in citywide traffic state estimation,
the kriging task becomes highly important and challenging.
Given the high installation and maintenance costs of traditional

fixed sensing techniques (e.g., loop detectors or surveillance
cameras), the sensor detectors usually only cover a small
fraction of the road network in the whole city, leaving large
chunks of roads without sensors (whole row missing) of which
the data needed to be estimated. In this case, it is important
to incorporate a proper spatial process in order to leverage the
data from available sensors to estimate/interpolate variables
at unseen locations. Conceptually, the kriging task in traffic
data analysis is equivalent to installing “virtual sensors” in a
network. Some recent studies have proposed to incorporate
correlations learned from multiple data sources, e.g., fus-
ing camera data and crowdsourcing floating car data [29],
or combining limited sensor data with additional simulation
modules [30] to achieve kriging in citywide traffic inference.

III. PRELIMINARIES

A. Notations

Throughout this paper, we use lowercase letters to denote
scalars (e.g., x), boldface lowercase letters to denote vectors
(e.g., x ∈ R

M ), and boldface capital letters to denote matrices
(e.g., X ∈ R

M×N ). For a matrix X ∈ R
M×N , we denote the

i th row and j th column by X i: and X : j , respectively, and the
elements are denoted by xi, j or [X]i j . The Frobenius norm of

X is defined by �X�F :=
��M

m=1
�N

n=1 x2
m,n . The transpose

and trace of X are denoted by X� and tr(X), respectively.
We define the vectorization of X as its column concatenation
(i.e., by stacking the column vectors of X), and denote it by
X : or vec(X) ∈ R

M N . The operations A ⊗ B and A � B
denote the Kronecker product and element-wise multiplication
of matrices A and B, respectively. Finally, I M denotes an M ×
M identity matrix and 1M denotes a length-M column vector
of ones.

B. Problem Description

In this work, we focus on two tasks: imputation and kriging
for spatiotemporal data, given a high ratio of missing values.
We consider here a partially observed data matrix Y ∈ R

M×N ,
where rows correspond to sensors at M locations and columns
correspond to N time points that are uniformly distributed.
The elements of Y represent traffic state variables, e.g., traffic
speed or flow at a specific location and time. Observed data
points are denoted by P�(Y ), in which � refers to the set of
observed indices and P�(·) is the projection operator retaining
entries with indices in �. We consider a high ratio (> 50%) of
missing data, and the goal is to complete the missing values
(with indices in �c) based on the observed data P�(Y ) in
different missing scenarios.

We refer to kriging as a special imputation task for certain
rows in Y that are completely missing. For instance, in the case
of Figure 1 with five sensors, kriging refers to the estimation
of signals at unknown sensors {#2, #4} based on the incom-
plete observations from sensors {#1, #3, #5} by leveraging the
spatial dependencies among the five sensors. Specifically, for
the kriging tasks, we consider three types of missing scenarios
as illustrated in Figure 1: (a) random missing (RM), i.e., data
at sampled locations are missing randomly; (b) random block
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Fig. 1. Illustration of the kriging tasks in three missing scenarios. Observed
data are represented in blue lines, random missing points and consecutive
missing points are represented in gray circles and gray lines, respectively.

missing (RB), where observations at the sampled locations are
corrupted during a time interval; (c) nonrandom block missing
(NB), where data are missing at some consecutive timestamps
for all sampled sensors. Both random and nonrandom block
missing in (b) and (c) also include random missing values.
These missing scenarios correspond to time-varying sensor
availability in real-world applications: some sensors might be
corrupted/not functional at random or continuous-time points,
while new sensors need to be introduced. Note that when
performing these tasks, we have additional spatial information
(e.g., network typology, sensor location) for the row indices
in matrix Y to encode spatial consistency in the model.

C. Classic MF Models

Given an incomplete M × N data matrix Y , standard MF
decomposes the matrix as a product of two low-dimensional

latent factor matrices U ∈ R
M×D and V ∈ R

N×D (D �
{M, N}):

Y = UV � + noise. (1)

Training such a model involves finding the best rank-D
approximation to the partially observed data matrix given a
specified loss function. With a probabilistic framework, the
Probabilistic Matrix Factorization (PMF) model imposes a
zero-mean Gaussian assumption on each row of the latent
factors and estimates parameters using Maximum a Posteri-
ori (MAP) estimation [6]. The objective function is:

min
U,V

1

2

���P�(Y − U V �)
���2

F
+ λU

2
�U�2

F + λV

2
�V�2

F , (2)

where λU and λV are regularization parameters depending on
the variances of the Gaussian priors. Bayesian Probabilistic
Matrix Factorization (BPMF) model [31] is further proposed
as a fully Bayesian treatment of PMF to address the parameter
tuning problem.

However, standard MF cannot describe the correlation
among the rows/columns of the data—row/column permuta-
tion does not affect the estimation accuracy. In order to account
for spatiotemporal correlations, a potential strategy is to use a
graph regularization in the low-rank model. For example, Rao
et al. [7] introduced an efficient Graph-Structured MF (GSMF)
model when side information (e.g., a graph) is available. The
optimization problem can be written as:

min
U,V

1

2

���P�(Y − UV �)
���2

F
+ λU

2
�U�2

F + λV

2
�V�2

F

+λL

2

�
tr

�
U�LU U

	
+ tr

�
V �LV V

	

, (3)

where LU and LV are Laplacian matrices constructed from
the graphs for rows and columns, respectively. While this
approach captures the row and column dependencies through
the Laplacian regularizer, the optimization model also involves
more weight parameters that have to be tuned carefully.

D. MF With GP Priors

A more generalized approach is to specify a covariance
structure instead of a graph to encode the spatial and tem-
poral dependencies. GPFA [14] (or Kernelized Probabilistic
Matrix Factorization (KPMF) [27]) replaces the graph Lapla-
cian regularization by introducing row-wise and column-wise
kernel (covariance) functions. The model assumes that each
column of the latent factors, i.e., U :d and V :d , follows a zero
mean GP prior. KPMF imposes a strong assumption that the
covariance functions of priors are known in advance, while
GPFA learns kernel hyperparameters. In KPMF, the latent
matrices U and V are estimated through MAP based on
gradient descent. The resulting objective function is given by:

min
U,V

1

2σ 2

���P�(Y − U V�)
���2

F
+ 1

2

D�
d=1

U�:d K−1
u U :d

+1

2

D�
d=1

V �:d K−1
v V :d , (4)
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where K u ∈ R
M×M and K v ∈ R

N×N are the covariance
matrices for U and V , respectively.

Note that GSMF can be considered a special case of
GPFA/KPMF where a regularized Laplacian kernel [32] is
used as the GP prior. The main difficulty of this kernelized
model is to determine the hyperparameters of the covari-
ance/kernels. Luttinen and Ilin [14] proposed a variational
Bayesian approach to estimate the model parameters and
hyperparameters. However, this approximation scheme might
produce inaccurate results because of the deterministic sim-
plified estimation for the joint posteriors [31] and the neglect
of the coupling between kernel hyperparameters and latent
factors [17], [33]. Next, we present a complete Bayesian treat-
ment of KPMF using Markov chain Monte Carlo (MCMC),
in which both the GP hyperparameters and the latent factors
can be sampled efficiently.

IV. METHODOLOGY

Following the main framework of GPFA, we introduce a
new MCMC algorithm for model inference, and we call this
model Bayesian Kernelized Matrix Factorization (BKMF).

A. Model Description

In keeping with the MF framework in Eq. (1), we assume
an independent noise term for each row of the data, i.e., define
a spatially varying noise variable ��

m ∈ R
N , m ∈ {1, · · · , M},

each following a Gaussian distribution N (0, τ−1
m ). The distri-

bution for the entries of the Y data matrix becomes:
ym,n ∼ N

�
Um:V �

n: , τ−1
m

	
. (5)

This row varying assumption for noise term considers the
heterogeneity of the data, which could be more accurate in
modeling real-world datasets. Note that if the number of
observations in each row is too small to estimate a row-specific
variance (as it is in a kriging task, for example), one can also
set τm = τ to define an isotropic noise distribution.

Following GPFA, we use a zero-mean GP prior to model
each column of U and V :

U :d ∼ GP �
0, K u

d

�
, d = 1, · · · , D,

V :d ∼ GP �
0, K v

d

�
, d = 1, · · · , D, (6)

where K u
d and K v

d are computed using two kernel func-
tions ku

d (·, ·; θd) and kv
d(·, ·; ϑd) with hyperparameters θd

and ϑd , respectively. We ensure hyperparameters are positive
by doing a reparameterization on the logarithm scale. The
factor columns are assumed to be independent, thus the prior
probabilities of the whole factor matrices are:

p (U) =
D�

d=1

N �
U :d

 0, K u
d

�
,

p (V ) =
D�

d=1

N �
V :d

 0, K v
d

�
. (7)

We show the graphical model BKMF in Figure 2. Since
there exist no conjugate priors for the GP covariance hyper-
parameters, we use a Gaussian prior on each log-transformed

Fig. 2. The graphical model for BKMF.

kernel hyperparameter; and for each precision term τm , we use
a conjugate Gamma prior:

log (θ) ∼ N
�
μθ, τ

−1
θ

	
, θ ∈ {θ1, · · · , θ D},

log (ϑ) ∼ N
�
μϑ, τ−1

ϑ

	
, ϑ ∈ {ϑ1, · · · ,ϑ D},

τm ∼ Gamma (a0, b0) , m = 1, · · · , M. (8)

The model hyper-priors �0 = {μθ, τθ , μϑ, τϑ , a0, b0} are
predefined in the sampling process, and they should embody
the prior knowledge about a specific application. Nevertheless,
the selection of these initial values has little effect on the
final results when the number of update iterations is sufficient,
as observed in many empirical Bayesian estimation schemes.

B. MCMC-Based Prediction

In a Bayesian framework, the posterior distribution of a
missing point y∗

m,n : (m, n) ∈ �c is obtained by integrating
out both the model parameters and hyperparameters:

p
�
y∗

m,n

 P�(Y ),�0
�

=
� �

p
�
y∗

m,n

 U, V , τm
�

×p (U, V , τm | θ ,ϑ, a0, b0,P�(Y ))

×p (θ ,ϑ | μθ, τθ ) d {U, V , τm} d {θ ,ϑ} , (9)

where for brevity we omit the subscript in kernel hyper-
parameters and use θ and ϑ to denote {θ1, · · · , θ D} and
{ϑ1, · · · ,ϑ D}, respectively. However, the exact computation
of this posterior distribution is analytically intractable because
of the complex integration. With MCMC, we can approximate
the posterior as:

p
�
y∗

m,n

 P�(Y ),�0
� ≈ 1

K

K�
k=1

p
�

y∗
m,n

 U (k), V (k), τ (k)
m

	
,

(10)
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where K is the number of samples and U (k), V (k), τ
(k)
m denote

the kth sample obtained from the Markov chain with stationary
distribution being the posterior over parameters and hyperpa-
rameters {U, V , τm , θ ,ϑ}.
C. Inference Process

There are two main challenges for model inference. First,
there is a strong correlation between the model parameters and
the hyperparameters [16]: conditioning on {U, V } can induce
an extremely narrow posterior over {θ ,ϑ}. As a result, the
Markov chain will show poor mixing. Second, the conditional
distributions of GP hyperparameters are not known, implying
that the Gibbs sampler is not applicable in this context.

To cope with these issues, we update the hyperparameters
{θ ,ϑ} from their marginal posterior distributions with a slice
sampler [18], and combine it alternately with Gibbs sampling
for the model parameters {U, V , τm}.

We introduce below each inference module specifically.
1) Sampling Factor Matrices {U, V }: For factor matrices

{U, V }, the prior and likelihood are both Gaussian distribu-
tions; thus, the conditional posteriors are also Gaussian. Given
that UV � = I M UV � and vec(AX B) = (B� ⊗ A)vec(X)
for any matrices A, B, and X , Eq. (1) can be written as:

Y : = (V ⊗ I M ) U : + E:, (11)

where E = [�1; �2; · · · ; �M ] ∈ R
M×N is the noise matrix.

When τm = τ , the above equation can be seen as a linear
model where V ⊗ I M is the design matrix and U : is the slope
coefficient to be estimated. Since each column in U follows a
Gaussian distribution, we can get the analytical posterior:

p (U : | P�(Y ), V , τ, θ ) ∼ N
�

U :
 μ∗

U , (�∗
U )−1

	
, (12)

where

�∗
U = τ H� H + K −1

U ,

μ∗
U = τ

�
�∗

U

�−1 H�( Q: � Y :),
H = Q: � (V ⊗ I M ) ,

KU =

⎡
⎢⎢⎢⎣

K u
1 0 . . . 0

0 K u
2 . . . 0

...
...

. . .
...

0 0 . . . K u
D

⎤
⎥⎥⎥⎦ , (13)

and Q ∈ R
M×N is a binary indicator matrix with qm,n = 1 if

(m, n) ∈ � and qm,n = 0 otherwise. We can use the same
strategy for the factor matrix V , by noting that:

Y�: = (U ⊗ I N ) V : + E�: , (14)

where Y�: = vec(Y�) and E�: = vec(E�). We obtain the
following posterior for V :

p (V : | P�(Y ), U, τ,ϑ) ∼ N
�

V :
 μ∗

V , (�∗
V )−1

	
, (15)

where

�∗
V = τ H� H + K−1

V ,

μ∗
V = τ

�
�∗

V

�−1 H�( Q�: � Y�: ),

H = Q�: � (U ⊗ I N ) , (16)

and K V is a block diagonal matrix built from K v
d .

The posterior distributions of U and V can be factorized
into the product of conditional distributions over the column
vectors. For the U matrix, we have, for example:
p (U | P�(Y ), V , τ, θ )

=
D�

d=1

p
�
U :d

 P�(Y ), U :h,h �=d , V , τ, θ
�
. (17)

For each dimension d , the conditional distribution p (U :d | −)
is Gaussian:

p
�
U :d

 P�(Y ), U :h,h �=d , V , τ, θ
� ∼ N

�
μ∗

d , (�∗
d)−1

	
,

(18)

where

�∗
d = ϒd + �

K u
d

�−1
,

[ϒd ]mm = τ
�

n∈�m

v2
n,d , m = 1, · · · , M,

μ∗
d = �

�∗
d

�−1
ηd ,

�
ηd

�
m = τ

�
n∈�m

⎛
⎝ym,n −

�
h:h �=d

um,hvn,h

⎞
⎠ vn,d ,

m = 1, · · · , M,

and �m = {n : (m, n) ∈ �} denotes the set of indices n for
which ym,n is observed. Note that ϒd is a M × M diagonal
matrix and ηd is an M × 1 column vector. The posterior
distribution p (V :d | −) can be obtained in the same way.
These distributions can be sampled in parallel to speed up the
sampling process. However, this strategy ignores the posterior
dependencies among the columns of factors so the mixing can
be slow.

2) Sampling Hyperparameters {θ,ϑ}: In the standard para-
meterization framework of BKMF (Figure 2), the hyperpa-
rameters {θ ,ϑ} are updated based on the model parameters
{U, V } and the hyper-priors. Taking the hyperparameters of U
for example, the corresponding conditional posterior for θ in
θd is p (θ | U :d , μθ , τθ ) ∝ p

�
U :d

 0, K u
d

�
p

�
θ

 μθ, τ
−1
θ

	
,

which can be sampled using the Metropolis algorithm. How-
ever, conditioning on the latent factors to estimate the hyper-
parameters does not work in practice since the factors and the
kernel hyperparameters are strongly coupled in such hierar-
chical models [16], [34]. To improve the sampling efficiency,
we integrate out the latent factor variables (U or V ) from
the model, and learn the hyperparameters from the marginal
posteriors, such as p (θ | Y) ∝ p (Y | θ) p

�
θ

 μθ , τ
−1
θ

	
.

Specifically, to sample θd , we integrate over U :d in Eq. (11)
given the normal prior of U :d (p(U :d ) ∼ N (0, K u

d)), obtaining
the marginal likelihood:

log p
�P�(Y )| θd , U :h,h �=d , V , τ

� ∝ −1

2
R�: �−1

y|θ R:

−1

2
log

� y|θ
, (19)

where � y|θ = H K u
d H� + τdiag( Q:) with H = Q: �

(V :d ⊗ I M ), R = Y − �
h:h �=d U :h V �:h , and R: denotes
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Algorithm 1 Sampling for Each Hyperparameter θ in θd

Input: θ(k), U(k), V (k), τ (k), Y , slice sampling scale ρ
Output: θ(k+1)

1: Generate an initial sampling range:
r ∼ Uniform(0, ρ), θmin = θ(k) − r , θmax = θmin + ρ

2: Draw κ ∼ Uniform(0, 1)
3: loop
4: Draw proposal θ  ∼ Uniform(θmin , θmax)
5: Calculate

�
Ku

d

�
, � y|θ  , log p

�
θ   −�

corresponding to θ 
6: if exp

�
log p

�
θ   −� − log p (θ | −)

�
> κ then

7: return θ(k+1) = θ 
8: break
9: else if θ  < θ(k) then

10: Shrink sampling range minimum: θmin = θ 
11: else
12: Shrink sampling range maximum: θmax = θ 
13: end if
14: end loop

vec(R). We use the Woodbury matrix identity1 to compute
the inverse of � y|θ , and the first term in Eq. (19) becomes:

−1

2
R�: �−1

y|θ R: ∝ 1

2
τ 2 R�: H

�
(K u

d)−1 + τ H� H
	−1

H� R:.

The second term of Eq. (19) related to the determinant of � y|θ
is computed based on the matrix determinant lemma2 as:

−1

2
log

� y|θ
 ∝ −1

2
log

(K u
d)−1 + τ H� H

 − 1

2
log

K u
d

.
The hyperparameters θd are then updated with the marginal
posteriors log p

�
θd

 P�(Y ), U :h,h �=d , V , τ
�

as below:
log p (θd | −) ∝ log p

�P�(Y )
 θd , U :h,h �=d , V , τ

�
+ log p (θd)

∝ 1

2
τ 2 R�: H

�
(K u

d )−1 + τ H� H
	−1

H� R:

−1

2
log

(K u
d)−1 + τ H� H

 − 1

2
log

K u
d


+ log p (θd | μθ, τθ ). (20)

Considering that the efficiency of classic Metropolis sam-
pling is sensitive to the selection of the variances in the pro-
posal distributions, we apply an adaptive search algorithm —
slice sampling [18] — to sample hyperparameters according
to Eq. (20). This strategy is shown to be more robust to the
choice of the sampling parameters. The sampling process for
each θ in θd is given in Algorithm 1. The updating process
for ϑd , i.e., the covariance hyperparameters of V :d , is similar.

3) Sampling the Precision Term τ : Assuming the model
noise is isotropic, because of the conjugate prior setting, the
posterior distribution of τ follows a Gamma distribution:

p (τ | Y , U, V , a0, b0) ∼ Gamma
�
a∗, b∗� , (21)

1For matrices A, B, and C,
�

A + BC B�	−1 = A−1 −
A−1 B

�
C−1 + B� A−1 B

	−1
B� A−1.

2
A + BC B� =

C−1 + B� A−1 B
 det (C) det (A).

Algorithm 2 Sampling Procedure for BKMF

1: Initialize model hyperparameters {θ (1), ϑ(1)} and parameters
{U(1), V (1)}

2: for k = 1 : K do
3: for d = 1 : D do
4: Sample each hyperparameter in θ

(k+1)
d using Algorithm 1

5: end for
6: for d = 1 : D do
7: Sample each hyperparameter in ϑ

(k+1)
d using Algorithm 1

8: end for
9: for d = 1 : D do

10: Update each factor column U :d according to Eq. (18):
U(k+1)

:d ∼ p
�

U :d
 Y , U(k)

:h,h �=d , V (k), τ (k), θ
(k+1)
d

	
11: Update each factor column V :d similar to U :d :

V (k+1)
:d ∼ p

�
V :d

 Y , V (k)
:h,h �=d , U(k+1), τ (k),ϑ

(k+1)
d

	
12: end for
13: Sample model precision τ according to Eq. (21):

τ (k+1) ∼ p
�
τ

 Y , U(k+1), V (k+1), a0, b0

	
14: end for

where

a∗ = a0 + 1

2

�
(m,n)∈�

qm,n,

b∗ = b0 + 1

2

�
(m,n)∈�

�
ym,n − Um:V �

n:
	2

. (22)

4) Implementation: The complete sampling procedure for
BKMF is outlined in Algorithm 2. Note that when dealing
with the kriging tasks, instead of the component-wise updating
formulas shown in Algorithm 2, we sample the factor matrices
U and V as a whole using Eqs. (12) and (15) respectively to
make full use of the dependencies in factors.

V. EXPERIMENTS

To demonstrate the imputation and kriging performance of
BKMF, we conduct numerical experiments using real-world
spatiotemporal traffic datasets under various missing scenarios.
We compare results with several state-of-the-art spatiotemporal
analysis models. One of the key strengths of BKMF is its
ability to automatically learn kernel hyperparameters from
the data. This allows us to fully explore the performance of
different kernel prior settings on spatiotemporal pattern repre-
sentation and discovery. Therefore, several alternative kernel
priors will also be tested and evaluated in the experiments.

A. Data Description and Kernel Introduction

We conduct experiments on two publicly available traf-
fic datasets, both containing spatial structure information:
(1) SeData,3 a traffic speed dataset collected from 323 loop
detectors in Seattle highway over one year at 5-min inter-
val [35]. Here, we use one month of data and decrease data
size by selecting every 12th observation (i.e., one point per
hour). The selected raw data contains no missing values.
(2) METR-LA4 is also a traffic speed dataset, which includes

3https://github.com/zhiyongc/Seattle-Loop-Data
4https://github.com/liyaguang/DCRNN

Authorized licensed use limited to: McGill University. Downloaded on July 21,2022 at 00:57:54 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE II

PRIOR KERNEL FUNCTIONS FOR TEMPORAL DIMENSION

speed observations collected by highway loop detectors in Los
Angeles [10]. We select data over ten days (May 1, 2012 to
May 10, 2012) from 207 sensors and select every 4th point
(i.e., one point per 20-min interval), among which 1.32% of
the points are missing in the raw dataset.

For both datasets, we test two types of graph kernels,
regularized Laplacian and diffusion kernel [32], [36], as the
prior kernel function for the spatial factors in our model.
To build these graph kernels, we first define a symmetric
weighted matrix W using the exponential function based on
the road network distances:

wi, j = exp

�
−dist (i, j)2

l2
s

�
, (23)

where dist(i, j) is the shortest road network distance
between the i -th and j -th sensors, ls is the spatial length-
scale hyperparameter. Note that the diagonal entries of
W are zeros. The Laplacian matrix is then calculated
as Lap = diag (W1M ) − W . Based on the Lap matrix,
we define the regularized Laplacian (kRL) and the diffusion
kernel (kDi f f ) as below:

kRL(Lap; β) = (I M + β Lap)−1 ,

kDi f f (Lap; β) = exp (−β Lap) , (24)

where β is the kernel hyperparameter.
For the temporal factors, there are several choices for the

GP prior setting [12]. We list the kernel functions considered
in this work in Table II, where � = ti − t j denotes the
distance between time indices i and j , lt is the lengthscale
hyperparameter for temporal dimension, and σt is the variance
hyperparameter reflecting the magnitude of factors.

B. Experiment Settings

We perform imputation and kriging experiments on SeData
and METR-LA. For the imputation task, we test 50%, 70%,
90% and 95% random missing (RM) for both datasets. For the
kriging task, we set 20%, 40% sensors as unknown locations
with no observations. Then as illustrated in Figure 1, for
the time series collected from existing sensors, we further
introduce three missing patterns: (a) randomly putting 50%
of the sampled data as missing (kriging with random missing,
K-RM for short); (b) first selecting 50% RM for the sampled
signals then choosing 40% random block missing on the
remained data (kriging with random block missing, denoted
as K-RB), where the block sizes for SeData and METR-
LA are 12 and 18 time points, respectively; (c) first select-
ing 50% RM then choosing 40% nonrandom block missing

(kriging with nonrandom block missing, written as K-NB),
with block size being 6 and 8 for SeData and METR-LA.
K-RM, K-RB, K-NB correspond to the scenarios shown in
Figure 1 (a), (b), (c), respectively. The locations of unknown
sensors are randomly selected among the sensors with at least
one adjacent node to ensure that the spatial structure infor-
mation can contribute to the kriging process. Note that when
most of the sensors are missing, e.g., in citywide estimation,
additional spatial information is needed for inferring data at
locations without nearby adjacent nodes, such as the work
in [29].

To explore the kernel representation properties, we test
different kernel function settings. As explained in the
last section, we compare eight settings of spatiotemporal
kernels (kspat ial − ktemporal) following Eq. (24) and Table II:�
kRL −kExp, kRL −kν=3/2, kRL −kν=5/2, kRL −kS E

�
, and�

kDi f f −kExp, kDi f f −kν=3/2, kDi f f −kν=5/2, kDi f f −kS E
�
.

Specifically, for spatial factors, we apply the same kernel with
hyperparameters ls and β; for temporal factors, we use D
kernels with the same scale hyperparameter lt and respective
variance hyperparameters {σd : d = 1, · · · , D}. The factors
{U, V } are initialized randomly by sampling from a standard
normal distribution, and the unknown hyperparameters are
initialized to 1. For the imputation task, the rank D is fixed
to 15, 10, 5, 5, for 50%, 70%, 90%, 95% RM, respectively.
For the kriging task, we assume D = 10 and D = 5 for 20%
and 40% sensor missing, respectively. For MCMC sampling,
we use 2000 iterations to make sure that hyperparameters
and parameters converge, where 500 iterations are taken as
burn-in.

C. Competing Models

To demonstrate the advantage of the proposed framework,
we compare BKMF with several widely used spatiotemporal
analysis models named in Table I:

• Graph Regularized Methods: GSMF (Graph Structured
MF model) [7], where the graph Laplacian regulariza-
tion constrains both spatial and temporal factors. GLTL
(Greddy Low-rank Tensor Learning) [3], a tensor fac-
torization approach for spatial cokriging, where a graph
Laplacian is used to capture spatial correlations.

• AR Regularized Methods: We consider BPTF (Bayesian
Probabilistic Tensor Factorization), a Bayesian tensor
factorization model with one-order dynamic constraint for
temporal collaborative filtering [9], and TRMF (Tempo-
ral Regularized Matrix Factorization), a MF model with
temporal AR regularization for high-dimensional time
series imputation and prediction [5]. Note that BPTF and
TRMF can perform well in RM imputation tasks, but they
cannot deal with spatial interpolation, i.e., kriging.

• GP Regularized Methods: GPFA (Variational GP Factor
Analysis) [14], a GP constrained MF model which uses
variational inference to approximate the posteriors of
latent factors. KPMF is also a representative approach,
but we do not include it in the baselines since the
hyperparameters are difficult to decide.

For TRMF, we assume the lag indices are {1, · · · , 6} for
both datasets and choose temporal regularization parameters
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Fig. 3. Performance comparison of BKMF with different kernel settings for
the imputation and kriging tasks (in RMSE), where the vertical red dash line
denotes the best RMSE value.

through cross-validation. For graph regularized GSMF and
GLTL, we use the same Laplacian matrices as in BKMF and
select the regularization parameters through cross-validation.
For VGFA, we model both spatial and temporal factors
with the SE kernel following [14]. The model rank of all

Fig. 4. RM imputation results of Sensor #212 on Day 5 for SeData, in which
the results of BKMF giving the best performance are shown.

Fig. 5. RM imputation results of Sensor #89 on Day 2 for METR-LA.

these competing approaches is set as being the same as in
BKMF.

D. Evaluation Metrics

To evaluate the performance of the methods, we compute
two metrics: mean absolute error (MAE) and root mean square
error (RMSE), defined as follows:

MAE = 1

n

�
i /∈�

yi − ŷi
 ,

RMSE =
�

1

n

�
i /∈�

�
yi − ŷi

�2
, (25)

where n is the number of missing values, yi and ŷi are
the true value and estimation of the i -th missing element,
respectively.

E. Results and Analysis

1) Random Missing Imputation: We first compare the
imputation RMSE of BKMF with various kernel priors in
Figure 3 (a) and (b). We can see that different kernel com-
binations achieve similar accuracy in 50% and 70% RM
scenarios. This result indicates the flexibility of GP regular-
ization since any reasonable kernel priors are able to capture
the spatiotemporal correlations even when more than half of
the data is missing. The choice of kernel becomes important
when the data is extremely sparse, e.g., in the case of 95%
RM, where smoother temporal kernels tend to provide better
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TABLE III

RM IMPUTATION AND SPATIOTEMPORAL KRIGING PERFORMANCE (MAE/RMSE)

Fig. 6. Kriging results for SeData and METR-LA, where the gray background denotes the consecutive temporal block missing. (a) and (b) show the results of
SeData, including the estimated signals of one sampled sensor (Sensor #57) and one unknown sensor (Sensor #102). (c) and (d) are the results for METR-LA,
where the selected unknown sensor for illustration is different between tasks because the unsampled sensors are different in 20% and 40% kriging for this
data. In each case, the result of BKMF with the best RMSE is given.

performances. Specifically, BKMF with kDi f f − kν=5/2 and
kRL − kS E performed best in 95% RM for SeData and
METR-LA, respectively.

The comparison of imputation performances with other
baseline methods is given in Table III, in which we show the
results of BKMF having the best RMSE. It is clear that our
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proposed BKMF consistently achieves the best performance,
obtaining the lowest error in all scenarios. The superiority
of BKMF becomes increasingly salient when the missing
data increases, which implies that the Bayesian framework
enables BKMF to be less sensitive to the increasing missing
rates. Among the comparing methods, GSMF and GLTL
have poor results indicating that the graph regularization
may not effectively learn the temporal dependencies, and the
cross-validation cannot ensure a local fine-grained solution
for the model hyperparameters. BPTF and TRMF both per-
form well when the missing rate is relatively low and the
rank/parameters are appropriately selected, but fail when the
number of observations is small or the parameters are not fully
tuned. VGFA also obtains large errors in several missing cases,
which indicates that the kernel hyperparameters may not be
well approximated.

We show the imputed time series of a randomly selected
sensor in Figures 4 and 5 for SeData and METR-LA, respec-
tively. We see that with the GP regularized low-rank frame-
work, BKMF learns both global trends and local temporal
dynamics in the data. Even under the 95% RM scenario
where sensors capture very few observations, BKMF can still
estimate missing values as the Bayesian modeling is free from
parameter tuning and both spatial and temporal correlations
play positive effects.

2) Spatiotemporal Kriging: The kriging RMSE of different
kernel settings are also compared in Figure 3 ((c) and (d)).
The comparison shows that the regularized Laplacian kernel
performs better than the diffusion kernel in most of the kriging
tasks. This implies that the inverse-form regularized Laplacian,
which usually generates functions varying more rapidly com-
pared to the exponential diffusion kernel, can capture more
exact variations/dynamics between locations, which is crucial
for spatial interpolation (i.e., kriging). Furthermore, the model
is sensitive to the choice of kernel when there exists complex
block missing, particularly in 40% K-NB. Benefiting from the
Bayesian sampling scheme, BKMF allows us to fairly compare
different kernel combinations without prior knowledge, and to
further investigate kernel performances and choose the optimal
kernel priors in specific scenarios. As for the comparison
with baselines, we still summarize the kriging MAE/RMSE
results in Table III. It is evident that BKMF outperforms other
competing approaches with clearly lower errors. An interesting
finding is that GLTL produces better results under 20% or 40%
K-RM than pure 50% RM for SeData, which highlights the
importance of spatial correlation in kriging tasks.

We illustrate some of the kriging results in Figure 6 for
the two datasets. The estimations show that BKMF is able to
effectively reconstruct time series for the unknown sensors,
even when the observed sensors have a complicated missing
pattern. Specifically, BKMF can estimate the sudden speed
drop of morning or evening peak in 20% and 40% K-RM.
When some consecutive temporal points are missing over
the neighborhood or all sensors (K-RB/K-NB), BKMF still
recovers the temporal trend of the unknown sensor, despite
lacking the spatial information from adjacent locations.

3) Kernel Hyperparameters Illustration: We visualize some
examples of the kernel hyperparameters (i.e., {ls, β, lt })

Fig. 7. Trace plots and probability distributions of hyperparameters in
corresponding spatial and temporal kernels for imputation on SeData and
kriging on METR-LA. The kernel settings are kDi f f −kSE and kRL −kν=5/2
in (a) and (b), respectively.

learned for imputation and kriging in Figure 7 (a) and (b),
respectively, including the hyperparameter trace plots and the
corresponding probability distributions after burn-in. Specif-
ically, Panel (a) gives the results of ls, β in kDi f f and lt

in kS E for 50% RM and 90% RM imputation on SeData,
and Panel (b) plots the results of ls , β in kRL and lt in
kν=5/2 for 2 kriging cases (20% K-RM and 20% K-NB) on
METR-LA. The plots show that the Markov chains for kernel
hyperparameters mix well and that we can get interpretable
distributions of hyperparameters. For example, the temporal
lengthscale lt becomes larger in 90% RM compared to 50%
RM, meaning that the kernel functions change more smoothly
in time when the data is more sparse.

VI. CONCLUSION AND DISCUSSION

A. Conclusion

In this paper, we propose a new Bayesian kernelized prob-
abilistic MF (BKMF) model for spatiotemporal traffic data
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imputation and kriging. We introduce GP priors over the
columns of factors in the MF framework and develop an
MCMC sampling algorithm for model inference. The model
can characterize both global and local spatiotemporal struc-
tures of the data effectively. Particularly, we explore the impact
of selecting different kernel functions as the prior on both
the imputation and kriging tasks. Compared to other low-rank
spatiotemporal models, BKMF achieves the best estimation
performance for real traffic datasets and it is more robust high
sparsity.

B. Connections to Existing Low-Rank Spatiotemporal Models

BKMF is a generalization of many existing low-rank models
for spatiotemporal data analysis. Specifically, in terms of graph
structure, GSMF [7] corresponds to applying a regularized
Laplacian kernel prior to all the decomposed factors. As for
temporal dimension, BPTF [9] is equivalent to placing the
Ornstein-Uhlenbeck (OU) process as the covariance function
of temporal factors, and TRMF [5] equals to using Matern
class kernel functions as the temporal prior [12]. GLTL [3]
and several other spatiotemporal models such as in [8], [24],
can be seen as combining Laplacian kernel and Matern kernels
for spatial and temporal latent components, respectively.

C. Advantages and Limitations

Three notable advantages of this work are:
1) We propose a Bayesian sampling framework for the

spatiotemporal GP regularized MF model which can
efficiently learn both latent factors and kernel hyperpa-
rameters. The Bayesian framework and kernel proper-
ties allow us to automatically account for the complex
spatiotemporal dependencies without much prior knowl-
edge.

2) In our low-rank GP model, there is no need to consider
a complicated composite covariance function. Using
a simple type kernel form such as Matern 3/2 as
the GP prior of factors is enough to learn the data
correlation, since the kernel constraint captures local
smoothness/dynamics and the global consistency such
as the daily/weekly trend will be learned by the low-
rank assumption.

3) The results of BKMF are interpretable and can be
utilized to analyze spatiotemporal traffic patterns in prac-
tice. The learned kernel hyperparameters can extrapolate
future correlations in both the space and time domains.

The main limitation of BKMF is still the computational
cost. The inference process for kernel hyperparameters and
latent factors takes time and memory when the data size is
large. An approach to reduce the computation load is to use
sparse GP approximations by introducing inducing points [37]
or compact support kernels [38]. One can also apply low-rank
approximation for the factor covariance matrices [39] to fur-
ther decrease the computational time.
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