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Metro systems in megacities such as Beijing, Shenzhen, and Guangzhou are under great passenger demand
pressure. During peak hours, it is common to see oversaturated conditions (i.e., passenger demand exceeds
network capacity) and a popular control intervention is to restrict the entering rate by setting up out-of-station
queueing with crowd control barriers. The out-of-station waiting can make up a substantial proportion of total
travel time but is often ignored in the literature. Quantifying out-of-station waiting is important to evaluating the
social benefit and cost of metro services; however, out-of-station waiting is difficult to estimate because it leaves
no trace in smart card transactions of metros. In this study, we estimate the out-of-station waiting time by
leveraging the information from a small group of transfer passengers—those who transfer from nearby bus routes
to the metro station. Based on the transfer interval of this small group, we infer the out-of-station waiting time for
all passengers by a Gaussian Process regression and then use the estimated out-of-station waiting time to build
queueing diagrams. We apply our method to the Tiantongyuan North station of Beijing metro; results show that
the maximum out-of-station waiting time can reach 15 min, and the maximum queue length can be over 3000
passengers. We find out-of-station waiting can cause significant travel costs and thus should be considered in
analyzing transit performance, mode choice, and social benefits. To the best of our knowledge, this paper is the
first quantitative study for out-of-station waiting time.

1. Introduction

As the backbone of transportation systems in megacities, metro sys-
tems play a critical role in meeting the increasing demand of urban
mobility. For example, the Beijing metro—a network consists of 22 lines
and 391 stations—has an average daily ridership of more than 10 million
by the end of 2019 (Wikipedia contributors, 2019a). To better satisfy the
massive passenger demand, numerous measures have been taken to
maximize the operational capacity, such as reducing peak-hour headway,
increasing train speed, and removing seats for more standing space. In
addition to these engineering practices, recent research also shows
increasing interest in developing optimization strategies for the opera-
tion of large-scale metro systems, such as designing better timetables and
schedules (Niu and Zhou, 2013; Sun et al., 2014; Yin et al., 2016), syn-
chronizing different lines to reduce transfer time (Kang et al., 2015), and
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integrating the metro network with the bus network to minimize the
impact of service disruptions (Jin et al., 2014, 2015).

Despite the tremendous efforts in increasing operational capacity,
some metro systems are still operated in an oversaturated condition (Shi
et al., 2019), which is purely due to the fact that even the optimized
capacity cannot satisfy the burst of passenger demand. As a result, it is
common to see overcrowded platforms with left-behind passengers who
have to wait for more than one train to get on board during peak hours
(Zhu et al., 2018). In these extreme scenarios, safety measures need to be
taken to prevent overcrowdedness on the platform and operational risks
and ensure the smooth operation of the system. Flow control is also a
measure to keep safe social distance to prevent the spread of infectious
disease in public transit (Horcher et al., 2021). A common flow-control
measure is out-of-station queueing—passengers are compelled to queue
outside of a metro station before entering the metro station (see Guo
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et al., 2015; Bueno-Cadena and Munoz, 2017; Jiang et al., 2018; Zou
et al., 2018; Xu et al., 2019). It is reported that the out-of-station waiting
time of a few metro stations in Beijing, Guangzhou, and Shenzhen can be
up to more than 10 min at peak hours (Lin, 2021; Li, 2015).

Quantifying passenger waiting time in metro systems is crucial for
evaluating service quality/performance and understanding passengers’
choice behavior. In terms of the economic evaluation of public transport
services, waiting time is also a critical component in assessing the social
benefit/cost of different planning and operation strategies. In the liter-
ature, many methods have been developed to estimate the in-station
waiting time or transfer time of metro systems using individual-based
smart card transactions (Sun et al., 2012, 2015; Sun and Xu, 2012; Zhu
etal., 2018; Quetal., 2020). However, despite that out-of-station waiting
may cover a substantial proportion of overall travel time and the expe-
rience is much more unpleasant than waiting inside the train station (e.g.,
under bad weather (Zhang et al., 2021)), it has received little attention in
the research. This is primarily due to that out-of-station waiting time
cannot be inferred directly from smart card transactions of metro sys-
tems, since out-of-station waiting happens before a passenger taps into a
metro station. Although one can conduct field surveys to measure
out-of-station waiting, the survey approach is very time-consuming and it
cannot collect data continuously for long-term monitoring.

The goal of this research is to develop a data-driven method for
quantifying out-of-station waiting time using smart card data. To address
the aforementioned challenges, we propose an accessible and accurate
method by combining the smart card data from both bus and metro
systems. Our key idea is to consider those passengers who transferred
from a nearby bus stop to the metro station as a proxy, whose transfer
time can be estimated as the time interval from the first tapping-out on
the bus to the next tapping-in at the metro station. In detail, we first
identify these transfer passengers using smart card data. Next, the time
interval between the bus tap-out and the metro tap-in is used to estimate
the out-of-station queueing time. To handle the noise in the data and to
extend the estimation to all passengers, we assume the latent true out-of-
station waiting time is a continuous function of time and estimate it with
a Gaussian Process regression with a Student-t likelihood. Moreover, the
estimated out-of-station waiting time is used to build queueing diagrams
for further analysis. We present a case study for the Tiantongyuan North
station of Beijing metro. We find the maximum out-of-station waiting
time is around 15 min, and the maximum queue length can reach 3000
passengers. Lastly, we use a simulation to test the accuracy of the pro-
posed method.

To the best of our knowledge, this is the first quantitative study for
out-of-station waiting time estimation. The contribution of this paper is
three-fold. First, there is a lack of research on quantifying out-of-
station waiting time in metro systems; we use transfer passengers
from the bus to the metro as a proxy and apply Gaussian Process
regression to estimate the metro out-of-station waiting time. Our data-
driven method can be used for large-scale and long-term monitoring.
Second, we combine out-of-station waiting time with a queueing dia-
gram to estimate more criteria like queue length and arrival rate,
supporting better service adjustments. Lastly, we show by real-world
data that out-of-station waiting is a non-negligible part of the total
travel time for over-saturated metro stations; more attention should be
paid on this underestimated phenomenon. We also summarize poten-
tial solutions for out-of-station queueing.

The rest of the paper is organized as follows. Section 2 reviews
relevant works and presents the research gap. Section 3 introduces the
background and the problem. Section 4 presents the modeling frame-
work of out-of-station waiting time estimation. In Section 5, we present
a case study of the Tiantongyuan metro stations in Beijing; a simula-
tion is conducted to test the accuracy of the proposed model. Next, we
discuss potential solutions for the out-of-station waiting in Section 6.
Finally, Section 7 summarizes the paper and provides future research
directions.
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2. Literature review

Most modern metro systems adopt a fare gantry-based smart card
system, which generates a continuous flow of transactions registering
when and where passengers start their trips (Pelletier et al., 2011). Given
the rich information collected, smart card data has been widely used in
understanding individual travel behavior and enhancing the planning
and operation of metro systems (e.g., Niu and Zhou, 2013; Sun et al.,
2014; Jin et al., 2014; Kang et al., 2015; Jin et al., 2015; Yin et al., 2016).
In the following, we review the application of smart card data in esti-
mating waiting time and inferring route choices in metro systems.

The waiting time of a metro system is a crucial indicator for transit
service quality, and it is also a key determinant for passenger route choice
behavior (Wardman, 2004). Many methods have been developed to
estimating waiting times from smart card data. Typically, these methods
decompose the time interval between tapping-in (at origin) and
tapping-out (at destination) into waiting time, onboard time, and transfer
time using certain regression techniques and side information (e.g.,
timetables of trains). In the meanwhile, these methods usually also
output the route choice of each trip. For example, Kusakabe et al. (2010)
combined smart card data with train timetables to estimate which train is
boarded by each individual traveler. Sun et al. (2012) proposed a linear
regression model to decompose travel time and applied this model to
estimate the spatiotemporal loading profile of trains. Sun and Xu (2012)
used smart card data to study travel time reliability and proposed a
probabilistic mixture model to infer passenger route choice. Sun et al.
(2015) developed a probabilistic generative model of trip time obser-
vations characterizing both the randomness of link travel time and route
choice behavior. This model can be used as a passenger flow assignment
framework for service planning and operation. Krishnakumari et al.
(2020) developed a linear regression method that estimates the delay at
each metro station, link, and transfer.

There is also research on the waiting time for buses and transfers.
Early researchers estimated the average bus waiting time as a function of
bus headway (e.g., Osuna and Newell, 1972; Newell, 1974; Hickman,
2001) by assuming uniform passenger arrival and independent bus
headway. Amin-Naseri and Baradaran (2015) relaxed the assumptions
regarding the passenger arrival and the independence of headway to
improve the formulation-based method. Wepulanon et al. (2019) utilized
the first and last observation by Wifi detectors installed at bus stops to
estimate the average waiting time at bus stations. In terms of multi-modal
trips, most studies focus on evaluating the transfer time or walking time.
For example, Chang and Hsu (2001) proposed a mathematical model to
analyze the waiting time at intermodal transit stations. Hsu (2010) found
the transfer waiting time is mainly determined by the capacity and the
headway of connected services by a simulation. (Guo et al., 2011)
developed a mathematical model to calculate the average waiting time
for passengers transferring from rail to buses. (Wahaballa et al., 2021)
used a stochastic frontier model to estimate the transfer walking time and
waiting time distributions between bus stops and rail stations. Eltved
et al. (2021) used smart card data to estimate the walking time distri-
butions for transfers from bus to rail platform with the consideration of
possible intermediate activities.

The waiting time and route choice in an oversaturated metro system
are more complex. For instance, passengers may travel backward to an
uncrowded station to find a seat and then travel forward. Tirachini et al.
(2016) investigated this interesting backward traveling phenomenon and
estimated the disutility of sitting and standing (and also level of crowd-
edness) in metro trains. Besides, passengers often have to wait for mul-
tiple trains to get on board. Zhu et al. (2018) and Ma et al. (2019)
developed data-driven methods to estimate the number of left-behind
passengers in metro systems. Qu et al. (2020) also studied the waiting
time of left-behind passengers; they found passengers’ waiting time in
peak hours is much longer than the metro headway. Mo et al. (2020)
proposed a performance monitoring framework that incorporates the
number of left-behind passengers.



K. Zhu et al.

The aforementioned studies have proposed various methods to esti-
mate the waiting time, transfer time, or route choice from various data
sources. However, the out-of-station waiting time in metro trips is a
special phenomenon caused by oversaturated demand and in-flow con-
trol, which is not evaluated in the literature. And most above models
(e.g., walking time estimation models) do not work under this special
scenario. Therefore, we developed a new approach that combines the
smart card data from bus and metro systems to infer the out-of-station
waiting time in the metro system.

3. Background

Beijing Metro is one of the busiest metro systems in the world. During
rush hours, the ridership at a few stations is extremely high that pas-
sengers have to queue for quite a long time outside the station before
entering the metro station (see Fig. 1). For example, the Tiantongyuan
area of Beijing is one of the largest residential hubs in China; it has a total
population of 700 000 in 2019 (Wikipedia contributors, 2019b). There
are three metro stations, Tiantongyuan North (TTY-N), Tiantongyuan
(TTY), and Tiantongyuan South (TTY-S), in this area. Due to the large
number of commuting passengers, all three stations are oversaturated
during morning peak hours on weekdays. In this paper, we use the TTY-N
station as an example to demonstrate our proposed solution to quantify
out-of-station waiting time. The location of the TTY-N station is shown in
Fig. 2. Because the TTY-N station is the northern terminus of Metro Line
5, the boarding rate in the morning peak is controlled to alleviate the
overcrowdedness on the platform and to prevent the service at down-
stream stations be overwhelmed; this is also one of the reasons for the
out-of-station queueing. Without this flow-control intervention, the
trains will be fully loaded at departure, leaving no capacity for passengers
waiting at the subsequent/downstream stations.

The public transit system in Beijing uses a distance-based fare
scheme. Therefore, passengers need to tap their smart cards or tickets
when getting on and off a bus and when entering and leaving a metro
station. Useful information in smart card data includes anonymous IDs,
origin/destination, and timestamps of tapping-in/-out. For bus trips, the
transactions also record the ID of the bus. Note that user IDs are consis-
tent in both metro and bus systems, so that we can link trips from both
systems for a particular user. Next we show how to estimate the out-of-
station waiting time by combining the smart card data from both bus
and metro systems.
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As illustrated in Fig. 3, we separate all the incoming passengers at a
metro station into two groups: (G1) direct passengers who do not have a
previous bus transfer and (G2) transfer passengers that coming from a
nearby bus stop. For a direct passenger i, we only know the tap-in time
tin,i at the metro fare gantry, but we have no information about the out-of-
station queueing. For a transfer passenger i, we can know the metro tap-
in time t; ;, the bus tap-out time toy;, and the transfer duration diransfer,i
= tin,i — tout,i (We use t for a timestamp and d for a time duration/interval).
In addition, we can estimate the out-of-station waiting duration for a
passenger in G2 by subtracting the walking time dyax; between the bus
stop and the metro station from the transfer duration.

Typically, G2 only accounts for a small percentage of the total
boarding passengers. Therefore, we regard G2 as a small sample set
drawn from total passengers and use it to estimate the out-of-station
waiting profile for all boarding passengers. In doing so, we need to (1)
accurately estimate the out-of-station waiting time for all boarding pas-
sengers and (2) develop a method to analyze queueing profile. We
introduce the methodologies for these tasks in Section 4.

4. Modeling framework

This section elaborates the methods for profiling the out-of-station
waiting time using smart card data. First, in Section 4.1, we illustrate
the impact of noise in the data and propose a Gaussian Process regression
for the out-of-station waiting time estimation. Then, in Section 4.2, we
introduce the idea of using a queueing diagram to analyze the out-of-
station waiting.

4.1. Gaussian process for waiting time estimation

The out-of-station waiting time of a passenger i in G2 can be roughly
estimated by diansferi — dwalk,i> and we refer it as the observed waiting
time for simplicity. Fig. 4 shows the observed waiting time at different
metro tap-in times, where we regard the walking time d,,,x as a constant
and determine it by the median value of all diansfer during 12:00-4:00
p-m. (observing that no out-of-station waiting at off-peak hours). We can
see the observed waiting time is much higher in the morning peak.
However, there is substantial noise in the observed waiting time. Even in
a short period of time, there are significant discrepancies between
different observations. Sources of noise include different walking speeds,
unsynchronized clocks between smart card readers, intermediate

Fig. 1. The queue outside the Tiantongyuan metro station. Photo taken at 8:14 on Thursday, October 31, 2019.
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Fig. 4. The observed out-of-station waiting time (i.e., dyansfer — dwaik) and the moving average of nearest 30 data points at different metro tap-in times in a workday.

activities, and some passengers may “tap-out” before the bus arrives at
the bus stop to speed up the alighting. A moving average (MA) estimation
of out-of-station waiting is shown in Fig. 4, we can see the curve is jagged
(affected by the bus timetable), and the off-peak hours have significant
out-of-station waiting (not in line with the actual situation). Therefore,

moving average is not a good estimation because of the noise; a well-
founded method is required for out-of-station waiting time estimation.
We use a Gaussian Process (GP) regression (Williams and Rasmussen,
2006) to estimate the out-of-station waiting time. A GP is a
non-parametric Bayesian model that defines a distribution over
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functions. Gaussian processes are very flexible and can approximate
complex functions using various kinds of kernels and likelihoods. Most
importantly, a GP is a probabilistic approach that also gives confidence
intervals for the estimated values. In the presence of such a high level of
noise, the confidence intervals given by the GP are particularly useful for
judging whether the out-of-station waiting time estimation of a certain
period is reliable; this is why we choose GP for this task instead of other
machine learning models. We refer readers to the book by Williams and
Rasmussen (2006) for more information about Gaussian Processes.

Let y(t) be the observed waiting time for a passenger with metro tap-
in time t. For ease of description, the time t in here and after means the
metro tap-in time if not otherwise specified. The observed waiting time
can be decomposed into a latent “true” waiting time f(t) and a noise term

y(6) =f(t) +e (€8]

We assume the “true” out-of-station waiting time f(t) is a continuous
function of time. We need to infer the latent “true” waiting time given the
observed waiting time. In doing so, we impose a GP prior to f(t), meaning
the function's values f(t) = [f(t1),f(t2), ....f(t,)] " for any finite collection
of inputs t = [t1,t3, ...
tion. We will write

.t;]" have a joint multivariate Gaussian distribu-

F(t) ~ GP(u(t),k(1,1)), 2

where u(t) is the mean function and k(t,t') is the covariance/kernel
function. By convention, the mean function is set to zero, i.e., u(t) = 0.
For the covariance function, we choose the commonly used squared-
exponential (SE) kernel:

2
k(t, t’|f,/12) —lzexp<— (t;ftz) ), 3)

where the length scale # and the variance 42 are two hyperparameters
that should be calibrated by data. This simple SE kernel (only two pa-
rameters) works pretty well for approximating continuous functions
(Micchelli et al., 2006). The covariance in Eq. (3) is larger for two closer t
and ¢, indicating passengers that enter the metro station at a closer time
are more likely to have more similar waiting time. We can see a GP is
fully specified by the mean and covariance functions and does not impose
any assumption on the form of the function f(t).

When using an i.i.d. Gaussian distribution for the noise term ¢, the
posterior of the latent variable f(t) can be solved analytically. However,
this convenient approach is very sensitive to outliers and is not appro-
priate for our data. To make a robust estimation for the “true” waiting
time, we assume the noise is a zero-mean i.i.d. Student-t distribution with
a long-tail probability density function (Jylanki et al., 2011):

) (e
r(g)\/ﬁa<l+ﬁ> ’ @

where v is the degrees of freedom and o the scale parameter (Gelman
et al., 2013).

Egs. (1)-(4) describe the GP regression with a Student-t likelihood.
Given a set of observed waiting times y at metro tap-in time t, the four
hyperparameters 6 = {#, 42, v, 6} can be optimized by maximizing the log
marginal likelihood

plelv,0) =

log p(y|t, 0) = log / p(ylf)p(f]t, 0)df. (5)
The log marginal likelihood cannot be explicitly obtained when the noise
is a Student-t distribution. Therefore, approximate inference methods
(Neal, 1997; Vanhatalo et al., 2009; Jylanki et al., 2011) were developed
to fit hyperparameters. We use the Laplace approximation (see Williams
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and Rasmussen, 2006, Section 3.4; Vanhatalo et al., 2009) as imple-
mented in GPy (GPy, since 2012) for the approximate inference. Next, for
new passengers with metro tap-in times t*, we can calculate the posterior
distribution p(f+|y,t,t-) of their “true” out-of-station waiting time. The
posterior distribution p(f+|y, t, t+) is a multivariate Gaussian, but whose
mean and variance can only be approximated obtained (e.g., using the
Laplace approximation, see Vanhatalo et al., 2009; Jylanki et al., 2011).

We use the posterior mean as a point estimation f (t) for the
out-of-station waiting time, referred to as the estimated waiting time in
the following. And the posterior variance is used to calculate confidence
intervals for estimated waiting time.

4.2. Queueing diagram

The out-of-station waiting phenomenon at a metro station is a
queueing process with varying arrival rate and service rate. To better
analyze the reason and the impact of the out-of-station queue, we further
establish a queueing diagram based on the estimated waiting time, as
illustrated in the virtual example of Fig. 5.

We used the virtual example in Fig. 5 to illustrate how to establish a
queueing diagram from the estimated out-of-station waiting time. Fig. 5
(a) shows the queueing diagram, where the departure curve indicates the
service rate at the metro gantries. Because the smart card data in Beijing
contain passengers' tap-in times, the departure curve is directly recon-
structed from passengers’ metro tap-in records. The passenger arrival
curve is not directly available from the data but can be inferred from the
metro tap-in time and the out-of-station waiting duration. For example,
the point B in Fig. 5 represents a passenger that tapped in the metro

station at tg; we can estimate his/her out-of-station waiting duration f (tg)
by the GP model described in Section 4.1, as shown in Fig. 5 (b). The
segment |AB]| in the queueing diagram means the out-of-station waiting
duration, we can thus calculate the arrival time for this passenger (point

A) by t — f(t). The arrival curve can thus be obtained by connecting the
estimated arrival times of all passengers. Note we use the estimated
waiting time instead of the observed waiting time for both G1 and G2 to
avoid the impact of noise in the data.

The queueing diagram provides important information much more
than just a visualization. For example, the slope of the departure curve
represents the service rate at the metro entrance, the slope of the arrival
curve means the arrival rate. The horizontal distance (e.g., |AB|) and
vertical distance (e.g., |AC|) between the two curves represent the
waiting time and the queueing length, respectively. Moreover, the area
between the two curves represents the total waiting time of all passen-
gers. Next, we will build queueing diagrams to analyze the out-of-station
queueing at the TTY-N station.

5. Results

In this section, we present the results for the out-of-station queueing
at the TTY-N metro station. Firstly, the data and the demand pattern at
the TTY-N station are introduced in Section 5.1. Next, Section 5.2 ex-
hibits the out-of-station waiting time estimated by GP regressions.
Finally, we analyze the queueing process in the morning peak and discuss
possible solutions in Section 5.3.

5.1. Data description

Based on the available data, we select a five-day period from August
3rd to 8th, 2015, to analyze the out-of-station queueing at the TTY-N
metro station. This five-day period reflects a typical weekday demand
pattern. We have full smart card data for the TTY-N station in this period.
The tap-in/out information for all metro passengers, including those who
use tickets, is registered in the data. Besides, we also have smart card data
from three different bus routes that pass through the TTY-N bus stop
(next to the TTY-N subway station). The walking time from the bus stop
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to the metro station is the same for the three bus routes. The whole
analysis is based on the tap-out at the TTY-N bus stop and the tap-in at the
TTY-N metro station.

If we detect the same smart card ID has an immediate metro trip
after a bus trip, and the interval between the bus tap-out and the metro
tap-in is within 30 min, we regard this ID as a passenger in G2. After
separating passengers into G1 and G2, the boarding demand of G1 and
G2 at the TTY-N station on a typical weekday is shown in Fig. 6. We
can see the TTY-N station services more than ten thousand passengers
per hour in the morning peak (7-8 a.m.), and the demand is very low
in the afternoon and evening, showing TTY-N is a typical residential-
type station. On the other hand, the number of passengers in G2 is
much smaller than that in G1. This is because only a small portion of
passengers are transferred from the bus stop. We use G2 as a small
sample drawn from all passengers to recover the out-of-station waiting
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profile at the TTY-N station. There are around one thousand observa-
tions of G2 per day in our data.

5.2. Estimated out-of-station waiting

Because the TTY-N station has a low boarding demand in off-peak
hours, there is no out-of-station waiting at off-peak hours (based on re-
ality). Therefore, we regard the walking time as a constant and determine
it by the median value of all diyansfer during 12:00-4:00 p.m. Next, we can
calculate the observed waiting time, as shown in the black points in
Fig. 7. We can see the noise is very high for the observed waiting time.

Next, we fit a GP with student-t likelihood for each day. A GP at the
scale of this study can be solved by a personal computer with Intel Core
i7-8700 Processor in around 1 min. Sparse GP (e.g., Titsias, 2009;
Gardner et al., 2018) can be used when the number of observations
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Fig. 6. The number of boarding passengers per hour at the TTY-N station (Monday, August 3rd, 2015).
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Fig. 7. The observed waiting time, the GP posterior mean, and the 95% confidence interval of the GP posterior mean.

becomes too big. Fig. 7 shows the posterior mean and confidence interval
of the estimated out-of-station waiting time. We can see the GP with a
Student-t likelihood is robust to the noise, and the estimated waiting time
makes intuitive sense. Despite the presence of outliers, the estimated
waiting time in general wiggles around zero from 5:00 to 7:00 a.m. and
after 9:00 a.m., which is consistent with the real-life situation. We also
see the confidence interval is larger in the period with fewer observa-
tions. The estimated waiting time on Friday night is unusually high (also
with larger confidence intervals), this could be caused by too few G2
passengers during that period. We expect the estimated waiting time for
morning peaks to be more reliable because of the larger number of ob-
servations and narrower confidence intervals. All five weekdays have
significant out-of-station waiting from around 7:00 to 9:00 a.m. The
maximum waiting time is around 15 min for Monday to Thursday, and
the waiting time on Friday is relatively shorter. The quantitative results
for the waiting time are shown in the Table 1.

5.3. Queueing analysis

This section analyzes the out-of-station waiting by queueing dia-
grams. We first set negative values in the estimated waiting time to zero.
Following the illustration in Fig. 5, we next establish queueing diagrams
for the five weekdays, as shown in Fig. 8.

The upper half of Fig. 8 shows the cumulative arrival curve and de-
parture curve at the TTY-N metro station. Note that the “departure” means
entering the metro gantry rather than boarding a train. The arrival/service
rate at time tis estimated by the average arrival/service rate in [t — 5min, t
+ 5min ], as shown in the lower half of Fig. 8. For all five days, we can see
the arrival rates are larger than the service rates from around 7:00 to 7:50
a.m., and queues are therefore formed. The maximum arrival rate is often
more than 300 people/min, while the maximum service rate is only
around 200 people/min. The queue lengths start to decrease after around
7:50 a.m. and the queue dissipates at around 9:00 a.m.

Table 1
Quantifying the out-of-station queueing from 7:00 to 9:00 a.m.
Monday Tuesday Wednesday Thursday Friday Average

Total number of passengers 22740 23193 22964 23241 22524 22932
Maximum waiting time (min) 15.1 15.0 15.3 13.5 111 14.0
Total waiting time (h) 3665 2984 3240 3006 2194 3018
Average waiting time (min) 9.7 7.7 8.5 7.8 5.8 7.9
Maximum queue length (people) 3191 3188 3251 2893 2310 2967
Maximum arrival rate (people/min) 295 384 319 302 280 316
Maximum service rate (people/min) 212 220 219 220 215 217
The time with the longest queue 7:48 7:43 7:44 7:52 7:49 7:47
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Fig. 8. The queueing process in the morning peak.

Table 1 summarizes major indices for the out-of-station queueing. We
can see the out-of-station waiting greatly impact passengers’ travel. The
maximum arrival rate is 50% larger than the maximum service rate.
When the queue has a maximum length, over three thousand passengers
are waiting in the queue, and it takes around 15 min for a passenger to
enter the station. On average, every passenger waits 8 min outside the
station in the morning peak. Considering the number of passengers, the
total out-of-station waiting time exceeds three thousand hours per day at
the TTY-N station; the queueing is a big waste of time and efficiency.

5.4. Validation by a simulation

Because the real out-of-station waiting time is unknown, we design a
numerical simulation to assess the accuracy of the proposed method. The
simulation reproduces a queueing process in the morning from 6:00 to
9:00. The parameters in the simulation are simplified from the smart card
data. We set the service rate at the metro entrance to be 200 people/min
and the bus headway to be 5 min. We divide the simulation into four
periods, 6:00-7:00, 7:00-7:40, 7:40-7:50, 7:50-9:00, and use different
passenger arrival rate for these periods. The arrival of G1 passengers
follows Poisson distributions with means of 100, 300, 180, and 120
people/min for the four periods, respectively. We set the number of G2
passengers per bus to be 10, 15, 10, and 8 people for the four periods,
respectively. The bus tap-out time of a passenger is uniformly distributed
in the 1-min period after the arrival of a bus. Finally, we use two sources
of noise to imitate the complex noise structure in the observed waiting
time: (1) We assume the walking time d,y,x from the bus station to the
metro station follows a normal distribution, ie.,
dyaik ~ N (u = 3,6% = 0.5%). (2) We assume 20% of the G2 passengers
have intermediate activities in their bus-to-metro transfer and the ac-
tivity duration dianster follows a shifted exponential distribution, i.e.,
(dianster — 1) ~ Exp(4 = %), where 1 is the rate parameter. We use the
shifted exponential distribution for the activity duration because we find
it produces a similar noise pattern as the real-world data.

Using the above configuration, we can simulate a queueing process
and calculate the “real” waiting time and the observed waiting time in
the simulation. Next, we apply the GP regression with student-t likeli-
hood to estimate the out-of-station waiting time and compare it with the
real waiting time. The estimation results are shown in Fig. 9, where we
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Observed waiting

- N
w o

Out-of-station waiting time (min)
)
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6:00 6:30 7:00 7:30 8:00 8:30 9:00
Metro tap-in time

Fig. 9. The out-of-station waiting time estimation of GP and MA in
the simulation.

also use a moving average (MA) of the nearest 30 data points for com-
parison. We can see the estimation of the GP regression is pretty close to
the real waiting time. In fact, the maximum difference between the GP
estimation and real waiting time is around 1 min (54 s). In contrast, the
estimation of the MA is affected by the noise and shows a significant bias.
We also calculate the root-mean-square errors (RMSE) between the real
and the estimated waiting time; it shows that the RMSE of GP regression
(0.258) is much smaller than that of the MA (0.802). Note that we did not
use the student-t distribution in the simulation for the noise of the
observed waiting time, but the GP regression with student-t likelihood
still shows excellent robustness to the noise, indicating our model has a
certain extent of generality for different types of noise. Although the
simulation cannot completely reproduce the real-world queueing process
(e.g., the arrival and service rate is time-varying and the noise is more
complex), the results of the simulation give a reference for the accuracy
of the GP regression.

6. Potential solutions for out-of-station queueing

Queueing outside of metro stations has a substantial negative impact
on passenger travel experience. In this section, we discuss existing and
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potential solutions to this problem. The fundamental reason for the out-
of-station waiting is the mismatch between demand and supply. The
commuting demand is rooted in the urban structure and can hardly be
changed. Many traffic congestion problems should be avoided in the
initial urban planning stage. However, we can still manage the demand
from a temporal aspect (Halvorsen et al., 2019). For example, providing
reduced-rate fares to off-peak trips can flatten the peak-hour demand
(e.g., shift peak-hour trips to pre-peak and after-peak hours). The
temporally differentiated fare scheme has been studied in much research
(Yang and Tang, 2018; Lu et al., 2020; Li et al., 2018; Ma and Koutso-
poulos, 2019; Adnan et al., 2020). A few real-world practices show that
properly designed off-peak discounts can help reduce metro crowding
(Halvorsen et al., 2016; Greene-Roesel et al., 2018). More generally,
systematic public travel demand management (PTDM, Ma et al., 2021)
could be designed to influence passengers’ mobility behavior. Based on
the queueing analysis of Section 5.3, a potential solution is to design a
fare scheme for the TTY-N metro station to reduce the boarding demand
from 7:00 to 8:00 a.m. Overall, using a temporally differentiated fare
scheme is a potential solution, although the effect is hard to evaluate in
advance.

Beijing metro has made a lot of efforts from the supply side. In fact,
the minimum headway of most metro lines of Beijing has been reduced to
less than 2 min to increase network capacity. Moreover, the original TTY-
N metro station has been integrated into Tiantongyuan North Trans-
portation Hub since October 13, 2019. The TTY-N Transportation Hub
integrates metro line 5, coaches, buses, and a P+R (Park and Ride)
parking lot. There is a large-scale waiting lobby in the hub, and passen-
gers no longer need to queue in the open air, which is helpful under bad
weather conditions. New transportation facilities are also under con-
struction or planning. For example, the Beijing metro line 13A, which is
expected to complete in 2023 (National Development and Reform
Comission, 2019), can significantly relieve the commuting pressure of
the Tiantongyuan area.

Reducing perceived waiting time can also improve the level of ser-
vice. For example, providing shelters (Fan et al., 2016) and improving the
thermal environment (Zhang et al., 2021) can significantly reduce the
perceived waiting time. Besides, it has been shown that providing
real-time information can reduce the anxiety for uncertainty and the
perceived waiting time (Watkins et al., 2011; Brakewood et al., 2014).
Therefore, providing real-time queueing information has the potential to
improve transit services (Brakewood et al., 2015).

Finally, using other transportation modes to share the metro's de-
mand is also a solution. Normally, the bicycle is not an ideal substitution
for the metro considering its short travel distance. However, there are
always special cases. In 2019, a 6.5 km elevated bicycle-only path was
built in Beijing to share the extremely high commuting demand between
Huilongguan and Shangdi, where Huilongguan is another high-density
residential area suffering from out-of-station queueing. It is reported
that cycling between Huilongguan and Shangdi takes around 30 min,
while it could take more than 40 min to commute by metro in the rush
hour (China Daily, 2021).

7. Concluding remarks

This paper proposes a data-driven method to estimate the waiting
time outside of an oversaturated metro station due to flow control
measures. To the best of our knowledge, this paper presents the first
quantitative study to measure passengers’ out-of-station waiting time. By
combining smart card data from the metro and bus system, we use
transfer passengers as a proxy to quantify the queueing time outside of a
metro station. A probabilistic approach by Gaussian Process regression is
developed to infer the out-of-station waiting time for all passengers.
Besides, we propose to analyze the queueing process by a queueing di-
agram. In the TTY-N metro station case study, results show our method is
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robust to the noise in data and provides a reliable estimation for out-of-
station waiting time. We find that out-of-station waiting can be a big
burden—more than 15 min waiting time—for passengers in over-
saturated metro stations. Our results could help transit agencies better
understand service performance. Considering out-of-station waiting is a
recurring issue in megaticies like Beijing and Shenzhen, the accurate
estimation of out-of-station waiting should be used to evaluate user
utility and social cost, which could be further used to support decision-
making, such as designing better flow-control strategies.

A limitation of this work is the lack of validation by a field survey.
Because we can only access the smart card data of 2015, but the boarding
demand at the TTY-N station has drastically changed since the comple-
tion of the TTY-N Transportation Hub and the outbreak of COVID-19.
Nevertheless, the GP regression produces reasonable confidence in-
tervals (validated in the off-peak hours), and we believe that our esti-
mation should be a solid reference. The numerical simulation in Section
5.4 also verifies the accuracy of the GP regression. Although only a small
sample of data is available for this study, authorities that have access to
data can use our method for large-scale and long-term monitoring.

There are several directions for future research. First, the perfor-
mance of metro systems can be re-evaluated by taking the out-of-station
waiting into account. Our case study shows that passengers at Tianton-
gyuan North suffer while downstream passengers benefit from the flow-
control measures. A critical research question is to balance the trade-off
and design optimized flow-control strategies based on passenger flow
assignment when demand exceeds network capacity. Second, because
waiting in an open air is more vulnerable to extreme weather, it is
important to quantify the disutility of out-of-station waiting time (Tira-
chini et al., 2016; Zhang et al., 2021). Furthermore, how the waiting time
affects mode choice is also worthy of investigation (Sun and Xu, 2012).
Finally, an interesting and important research direction is to develop
time- and station-dependent transit fare schemes to flatten peak hour
demand and thus reduce the mismatch between demand and supply
(Yang and Tang, 2018; Lu et al., 2020; Li et al., 2018; Adnan et al., 2020).
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