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Winter road surface condition classification using convolutional
neural network (CNN): visible light and thermal image fusion
Ce Zhang, Ehsan Nateghinia, Luis F. Miranda-Moreno, and Lijun Sun

Abstract: During winter, road conditions play a crucial role in traffic flow efficiency and road safety. Icy, snowy, slushy, and wet
road conditions reduce tire friction and affect vehicle stability which could lead to dangerous crashes. To keep traffic operations
safe, cities spend a significant budget on winter maintenance operations such as snow plowing and spreading of salt and sand.
This paper proposes a methodology for automated winter road surface condition classification using convolutional neural network
(CNN) and the combination of thermal and visible light cameras. As part of this research, 4244 pairs of visible light and thermal
images are captured from pavement surfaces and classified into snowy, icy, wet, and slushy surface conditions. Two single-stream
CNN models (visible light and thermal streams) and one dual-stream CNN model are developed. The average F1-Score of dual-
streammodel is 0.866, 0.935, 0.985, and 0.888 on snowy, icy, wet, and slushy, respectively. The weighted average F1-Score is 0.94.

Key words: winter road surface condition monitoring, winter road maintenance, convolutional neural network, sensor
fusion, thermal camera.

Résumé : En hiver, les conditions routières ont un impact crucial sur l’efficacité de la circulation et la sécurité routière. Les condi-
tions glacées, enneigées, boueuses et mouillées sur la route réduisent le frottement des pneus et ont une incidence sur la stabilité
du véhicule, ce qui pourrait entraîner des accidents dangereux. Pour assurer la sécurité de la circulation, les villes consacrent un
budget important aux opérations d’entretien hivernal, comme le déneigement et l’épandage de sel et de sable. Cet article propose
une méthodologie de classification automatisée des conditions de la surface de roulement d’hiver à l’aide d’un réseau neuronal
convolutif (RNC) et de la combinaison de caméras thermiques et de caméras à lumière visible. Dans le cadre de cette recherche,
4244 paires d’images de lumière visible et d’images thermiques sont capturées à partir des surfaces de chaussée et classées en
conditions de surface neigeuse, glacée, humide et boueuse. Deux modèles RNC à flux unique (lumière visible et flux thermiques)
et un modèle RNC à double flux sont développés. Le score F1 moyen du modèle à double flux est de 0,866, 0,935, 0,985 et 0,888 sur
neige, glace, mouillée et neige fondante, respectivement. Le score F1 moyen pondéré est de 0,94. [Traduit par la Rédaction]

Mots-clés : surveillance de l’état de la surface des routes l’hiver, entretien des routes l’hiver, réseau neuronal convolutif,
fusion de capteurs, caméra thermique.

1. Introduction
Inwinter, road surface condition greatly affects traffic efficiency

and safety, especially in countries that experience long winters
and harsh climates. The literature discusses the relationship
between road surface condition and crash frequency. Driving
conditions often deteriorate during snowfall and ice formation
due to a significant decrease in pavement friction and diminished
vehicle traction (Norrman et al. 2000).
In cold regions, roads can freeze for a long period each winter,

which reduces the friction between the road surface and the vehicle,
thereby increasing the stopping distance of the vehicles (Kietzig
et al. 2010). Moreover, the reflected sun’s glare from snow covered
can cause snow blindness, impairing the driver’s vision. In the
United States, almost 26% of traffic accidents occur on snowy, icy,
wet, or slushy roads, and 18% of crashes involving fatalities occur
duringwintry weather (FHWA 2020).
Winter roadmaintenance operations are crucial to and the safety

of roads. However, these operations incur high monetary costs and
cause adverse environmental effects. Each year, governments spend
a considerable amount of money on snow plowing and spreading

salt and sand on roads to increase the freezing point of the road sur-
face. The cost of winter maintenance, for example, in Ontario, Can-
ada, has been estimated to exceed $100 million per year (Ontario
Ministry of Transportation 2016).
Winter in cities such as Montreal, Canada, is extremely long and

cold, making road conditions an essential issue for traffic opera-
tion. According to weather reports, in Montreal, winter lasts for
fivemonths, with an average high of�2.3 °C (daytime) and an aver-
age low of �8.9 °C (nighttime). Due to the continental climate, of
Montreal, the city experiences several snowy days with more than
1 cm of snow, while in themiddle of winter, the average snow cover
is 13 cm. Cities like Montreal spend significant resources in main-
taining appropriate surface conditions on their roads during win-
ter, to ensure road user safety and traffic operations. In the winter
of 2018–2019, for instance, the City of Montreal spent 192 million
dollars in winter maintenance, according to the government’s an-
nualfinancial report (City ofMontreal 2019).
As an indication of the importance of winter road safety, auto-

mated road surface monitoring and data collection systems have
emerged in recent years. These systems are designed to reduce
potential accidents caused by frozen and slippery roads by gathering
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real-time information about road surface conditions and providing
feedback to winter road maintenance operators and drivers via
on-road warning systems. Using data from automatic monitoring
systems, for example, decision-makers in winter operation pro-
grams can enhance the efficiency of winter road maintenance by
better planning and implementing anti-freezing (anti-icing) proce-
dures and controlling the dosage of chemical solutions.
In recent years, researchers proposed using automated camera-

based systems for road surface monitoring. Current systems face
the challenge of detecting ice and snow on the road surface. Zhang
et al.’s integration of a videomonitoring systemwith Support Vec-
tor Machine (SVM) and K-Nearest Neighbors (KNN) performed well
in classifying snowy and dry surface conditions (Zhang et al. 2012).
Nevertheless, their results indicated the inefficiency of their sys-
tem in distinguishingwet road surfaces from icy conditions.
Studies have been conducted on the relationship between air

temperature and road temperature during the wintery weather
conditions, as well as their relationship with pavement surface
conditions. Wood and Clark studied the patterns of road surface
temperature during wintery weather conditions (Wood and Clark
1999). By analyzing historical and forecast weather information,
Kangas et al. attempted to predict the road temperature and to
classify road surface conditions as weather conditions change
(Kangas et al. 2015). Different studies have developed models for
estimating road temperature based on several factors such as air
temperature and have used the results of these models to predict
road surface conditions (Karsisto and Lovén 2019; Yang et al. 2020).
Junhui and Jianqiang (2010) developed a neural network model

that considers road temperature, air temperature, air humidity,
season, location, and time as independent variables, and predicts
road surface conditions with 90% accuracy. Jonsson et al. (2015)
studied utilizing a near-infrared camera and halogen search-
lights for surface condition classification, and they demonstrated
the accuracy of their system as 80% for dry, 100% for wet, 70% for
icy, and 90% for snowy surface conditions.
Despite recent advancements, to the best of our knowledge,

very few studies have addressed the performance of thermal
cameras for monitoring winter surface conditions. The perform-
ance of thermal cameras alone and in combination with visible
light (RGB) cameras has not been studied. Furthermore, the use
of convolutional neural networks (CNN) for monitoring winter
road surfaces is a relatively new approach. Despite the Pan et al.
(2018) integration of a CNN model into their camera-based sys-
tem, the limited set of images has restricted the performance of
theirmodel.
In this study, a novel solution for the automatic monitoring

and classification of winter road conditions is presented using
machine learning techniques applied to visible light and thermal
images of the road surface. Specifically, CNN models are trained
with thermal and regular video cameras to automatically detect
and classify the presence of ice or snow in images.
The proposed solution includes a regular camera to capture

visible light range images as well as a thermal camera to capture
infrared range or thermal images. The cameras are mounted on a
vehicle for data collection, and the images are collected by driv-
ing through Montreal’s streets in winter. This work involves tun-
ing different CNN structures on a training dataset to discover a
promising classifier for winter road conditions and to analyze
the impact of each image source such as visible light or infrared.

2. Literature review
Knowing the amount of chemical solution that needs to be

applied for maintaining a safe road surface in the winter is essen-
tial for road maintenance operations. At first, the tire friction coef-
ficient was used to assess the road surface condition. For instance,
Erdogan et al. (2009) proposed a method for determining tire-road
friction coefficient based on lateral tire forces.

Due to recent developments in the Intelligent Transportation
System (ITS), it became more convenient to determine highway
surface conditions using camera-basedmonitoring systems. Takeuchi
et al. (2012) collected 91 images of a highway surface using road sur-
veillance cameras, then they used the pixel intensity histogram
to determine five texture features, including mean, contrast, var-
iance, energy, and entropy. They used the K-Means algorithm for
clustering those images and achieved an accuracy rate of 84.8% in
daytime conditions.
Omer and Fu (2010) presented a road surface monitoring system

using GPS-tagged images captured by low-cost cameras mounted
on non-dedicated vehicles such as public transportation or police
vehicles. They categorize their image dataset into three road surface
classes: bare, snow-covered, and tracks, where the tracks represent
straight lines caused by vehiclewheels rolling over the bare road sur-
face. They reported an accuracy of 86% for their proposed system
using the image edge detection operation and SVM classification.
Their finding concluded that there is a significant color difference
between snow-covered and bare areas, and that image resolution,
camera angles, and lighting conditions can affect the accuracy.
Using smartphones, Linton and Fu (2015) designed a system for

monitoring winter road surface conditions that can be mounted
inside vehicles in such a way as to provide a clear view of the road
ahead. The system captured and sent time-stamped GPS-tagged
images to a server for classification into three road surfaces
including bare, partly snow-covered, and fully snow-covered.
Over 16 000 collected images, the average classification accuracy
was 73%. Zhang et al. (2012) developed a video-based method for
detecting snow cover using an edge background model. They
applied neural network, SVM, and KNN classifiers on a set of image
features extracted from the co-occurrence matrix of adjacent pixel
values. The KNN model outperformed the other two classifiers by
achieving an average accuracy of 93% when classifying images into
heavy snow, mild snow, and dry covers. However, their system did
not distinguishwell betweenwet and icy road conditions.
Jokela et al. (2009) constructed a surface monitoring system

that uses a stereo camera, an imaging spectrometer, and remote
surface temperature and state sensors. The feature extraction was
based on light polarization changes of road surface reflections
and granularity analysis. They reported 90% accuracy in detecting
icy, wet, snowy, and dry road conditions. In a study conducted by
Pan et al. (2018), the accuracy of a CNN model embedded in an
image-based road condition monitoring system was assessed at
76.7%. They examined bare, less than half snowy, half snowy, more
than half snowy, and fully snowy road surfaces in their dataset.
The Road Weather Information System (RWIS) has been used

for road condition prediction by combining weather data such as
temperature, humidity, wind speed, andwind direction. However,
it could be misleading to rely solely on this information. As an
example, it is impractical to use the road temperature to differen-
tiate between wet and icy conditions because icing condition may
occur at road temperatures ranging from�20 °C to 0 °C instead of
precisely at 0 °C since de-icing chemicals decrease the freezing
point of the surface fluid (Omer and Fu 2010; Tabuchi et al. 2003).
Jonsson (2011) evaluate whether a dataset obtained from an RWIS

field station equipped with a near-infrared camera and an infrared
searchlight is sufficient for an accurate road condition classification.
Their system achieved 91% accuracy for dry, 100% for icy, 100% for
snowy, 74% forwheel track, and 100% forwet class.
McFall andNiitula (2002) introduced an audiovisual system consist-

ing of an analog high-resolution grayscale camera and a ring buffer
for audiovisual synchronization. Using an audio signal spectrogram
and an image’s edge map as the feature vector, a KNN classifier
achieved an accuracy of 95% for icy conditions, 81% for snowy, and
97% forwet, and low accuracy of 23% for dry conditions.
Casselgren (2011) used polarized short-wave infrared light

(SWIR) sensors for classifying road conditions. Near-infrared
devices emit light of different wavelengths to the road surface.
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Based on how the surface absorbs, scatters, and polarizes the
emitted light, they can detect different road conditions. Despite
the high average accuracy rate of 93%, the setup was stationary,
with a limited, fixed field of view.
Jonsson et al. (2015) classified road surface conditions based on

spectral-based image analysis into four types: dry, wet, icy, and
snowy. They built a mobile imaging system equipped with a near-
infrared camera and two halogen searchlights. With the embed-
ded with an SVM classifier, their system achieved an accuracy of
94% for dry conditions, 94% for wet, 97% for icy, and 98% for
snowy road surface conditions.

3. Methodology
There are various steps in this research methodology: (1) estab-

lishing a data collection system; (2) collecting and labeling data;
(3) implementing and validating CNNmodels.

3.1. Data collection system
In the data collection system, an infrared camera, ThermiCam

wide model built by FLIR (shown in Fig. 1), was used for collecting
thermal images from the road surface. With an output resolution
of 368 � 296 pixels and a temperature range from �34 °C to 74 °C,
this thermal camera can capture 15 frames per second (fps). Addi-
tionally, a visible light camera, GoPro Hero 7, is integrated to col-
lect visible light images. GoPro Hero 7 can reduce the effects of
vibrations caused by vehicle movements when capturing images.
The visible light image data was collected at 30 fps with an output
resolution of 1920� 1080 pixels.
Both cameras, visible light and infrared, were mounted on the

front of the vehicle, rather than the back, so that generated heat by
vehicle exhaust would not affect the thermal images. As shown
in Fig. 2, the thermal camera is installed on the left side of the
vehicle’s front from the driver’s perspective, and the visible light
camera is installed next to it without blocking its field of view. The
angles of view of both cameras were aligned with one another to
capture images from the samepart of the road surface.

3.2. Dataset collection and preparation
The video data collection took place on February 28, 2020,

when the weather was cloudywith no significant precipitation, and
the temperature ranging between �9 °C and �6 °C. Nevertheless,
Montreal experienced widespread snowfall the day before data col-
lection. The data were collected for 3 h in several areas of Montreal
that had various road surface conditions. After the video data was
collected, visible light and thermal footages were sampled at one

frame per second, and a total of 4244 images were selected man-
ually from all the sampled images and added to the database.
Despite both cameras being in alignment, a pixel-to-pixel match-

ing is performed between the visible light image and the thermal
image to determine the exact overlapping area. In Figs. 3a and 3b, the
red boxes show the overlapping areas on the original visible light
and thermal images. The unique coordinates of the four corners
of the two red boxes have been determined bymanuallymatching
multiple pairs of images. Figures 3c and 3d show the results after
determining the pixel coordinates of the four corners of each box
and cropping the original images into these boxes. Thermal
images were cropped to 188� 368 pixels, and cropped visible light
images were resized to the same size as the thermal images.
Based on the details of both visible light and thermal images, the

pairs of images were manually labeled into four classes: snowy, icy,
wet, and slushy. Figure 4 shows the visible light and thermal samples
for each labeled class. The snowy class (Figs. 4a and 4b) implies that the
road surface is snow-covered, the grayscale image is mostly white,
and the thermal image is brighter than the icy class. In the icy class
(Figs. 4c and 4d), the road surface is transparent (ice-covered) in the
grayscale image and dark in the thermal image. An image in the wet
class (Figs. 4e and 4f) shows a road surface with no clear evidence of
ice or snowbut onlywater. In the slushy class (Figs. 4g and 4h), the road
is coveredwith amixture ofwater and ice orwater and snow, the visi-
ble light image shows melting snow or ice, and the thermal image is
brighter than snowy and icy samples and darker thanwet samples.
The base dataset was built on collected images of these four

classes. However, three alternative datasets were created to address
some of the shortcomings of the base dataset. A summary of the
base dataset and its three alternatives is presented in Table 1.

1. The “Multiple” dataset: in addition to the four aforementioned
classes, an additional class called “multiple” is inserted (Figs. 4i
and 4j). This class contains images with more than one but
separate surface conditions such as snowy and icy, snowy and
slushy, wet and slushy, or wet and icy conditions.

2. The “Artificial” dataset: to deal with the uneven distribution
of samples per class, especially the insufficiency of “snowy”
images, an image generator from the OpenCV library is
used (Bradski and Kaehler 2008). Accordingly, an additional
241 artificial “snowy” images are generated by flipping, rotating,
masking, or cropping the original snowy images.

3. The “Split” dataset: to reduce the number of parameters and
to increase the sample size, the original images of the “Base”
dataset are split horizontally into two images with the same
dimension of 188�184 pixels each.

3.3. CNNmodels implementation
The convolutional neural network (CNN) has demonstrated prom-

ising performance in various applications including image classifica-
tion. This paper presents an automated system for winter road
surface condition detection and classification using CNNmodels con-
structed from a benchmark model called the VGG-16 (Simonyan and
Zisserman 2014). The VGG-16 has 16 layers andmore than 138million
parameters, and it is designed for big datasets with many classes
such as the ImageNet datasetwith 15million images and 10 thousand
classes. Since the dataset for this study contains 4244 labeled images
from four classes, the proposed CNN is restructured into seven layers
to increase processing speedwhilemaintaining performance.
There are four types of layers in a CNNmodel: convolutional, max

pooling, flattening, and fully connected layers. Each convolutional
layer includes feature maps, kernels, and padding. The first feature
map is the original image. The kernel is a digital filter (matrix) that
operates only across its receptive field and its size and stride are
hyperparameters. The padding is used to preserve the input size in
cases that some part of the receptive field of the kernel is outside the

Fig. 1. ThermiCam wide-thermal camera by FLIR.
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boundary of the featuremap. Someof the convolutional layers are fol-
lowed by amax-pooling layer that reduces the size of the featuremap
by taking themaximum value of a square window (3� 3 or 2� 2 pix-
els) from the current feature map and inserting it in the reduced fea-
ture map. After the last pooling layer, there is a flattening layer that
transforms the last two- or three-dimensional featuremap into a one-
dimensional array (feature vector) and passes the feature vector to the
fully connected layers. The fully connected layers abstract a feature
vector into a decision vector of the same size as thenumber of classes.
The proposed CNNmodel contains seven layers in three blocks.

The first block includes a convolutional layer with 16 kernels (3�
3 receptive field) and a max-pooling layer (3 � 3 pool size). The
second block includes a convolutional layer with 32 kernels (3 �
3 receptive field) and a max-pooling layer (3 � 3 pool size). The
third block includes 2 convolutional layers with 32 kernels (3 �

3 receptive field) and a max-pooling layer (3 � 3 pool size). The
Rectified Linear Unit (ReLU) function, formulated in eq. 1, has
been used as the activation function of the convolutional layers.

ð1Þ f xið Þ ¼ maxð0; xiÞ

where xi is the output of the featuremap and input to the ith neuron
of the activation map, and f(xi) is the output of the same activation
neuron.
The SoftMax function (Jang et al. 2016), formulated in eq. 2, is used

in the neurons of the last fully connected layer. The number of neu-
rons in the last layer is equal to the number of classes and each Soft-
Max function calculates the probability of its corresponding class.
Then the class with the maximum probability will be chosen as the
decision or label.

Fig. 2. Thermal camera setup (front-view and side-view). [Colour online.]

Fig. 3. The original visible light (RGB) and thermal images with matching boxes: (a) original visible light image, (b) original thermal
image, (c) selected area of visible light image, and (d) selected area of thermal image. [Colour online.]
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ð2Þ P Y ¼ ijxj
� � ¼ g xið Þ ¼ exp xið Þ

XK

j¼0
exp xjð Þ

where xi is the input to the activation unit of ith neuron, and g xið Þ
is the probability of choosing ith class.

To avoid overfitting toward training set in early iterations of
the learning process, two regularization methods, Dropout (DO)
and Batch-Normalization (BN) have been used in the structure
of the proposed CNN. Dropout operation helps to avoid overfitting by
temporarily and randomly removing some of the learned parameters

Fig. 4. Visible light and thermal images of snowy, icy, wet, slushy, and multiple classes: (a) snowy-visible light, (b) snowy-thermal,
(c) icy-visible light, (d) icy-thermal, (e) wet-visible light, ( f) wet-thermal, (g) slushy-visible light, (h) slushy-thermal, (i) multiple-visible light,
and (j) multiple-thermal. [Colour online.]

Table 1. Summary of sample distributions per class of the four datasets.

Classes

Base Artificial Multiple Split

Training Test Training Test Training Test Training Test

Snowy 238 50 408 121 223 65 459 117
Icy 1302 334 1314 322 1319 317 2629 643
Wet 1204 301 1208 297 1228 277 2407 603
Slushy 651 164 658 157 634 181 1295 335
Multiple — — — — 432 119 — —

Sum 3395 849 3588 897 3836 959 6790 1698
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from the network (Srivastava et al. 2014). Batch-Normalization (Ioffe
and Szegedy 2015) is an alternative regularization method that pre-
vents the training process from getting stuck in the saturated
regimes of non-linearities (Shimodaira 2000).
Three CNNmodels have been implemented using the collected

datasets. First, a single-stream CNN is built by using only visible
light images. Second, another single-stream CNN is trained with
only thermal images. Third, a dual-stream CNN is designed to
capture the combination of both sources of visible light and ther-
mal images. The dual-stream CNN has two independent inputs,
and each input stream has one convolutional block fed by one of
the image sources.
Both single-streamCNNmodels,whetherusing visible light images

or thermal images, have the same structure and input size (displayed
in Fig. 5). The image on the right shows the continuation of CNN’s
part on the left. Conv2D and MaxPooling2D are two-dimensional
convolutional and max-pooling layers. Since the thermal images
have only one channel, the visible light images are also converted to
grayscale images.Therefore, both input sources are two-dimensional
matrices with 188 � 368 pixels. Each dense box is one layer of the

fully connected layers, and the last Dense box has only four neurons
producing the probability of choosing a class.
The structure of the dual-stream CNN is shown in Fig. 6. A

dataset composed of visible light and thermal images is used to
tune the dual-stream CNN model. The last feature map of each
stream is flattened and merged into a one-dimensional feature
vector of 4992 elements, which is twice the size of the flattened
vector of each single-stream CNN. Afterward, the flattened vec-
tor is given to a fully connected layer to generate the probabil-
ity of choosing each class.
A performance comparison between two single-stream net-

works and the dual-steam network is presented in Section 4.
Additionally, the dual-stream network with different weights for
each stream, thermal and visible light, is built and analyzed. To
alter the weight of a particular input in the dual-stream network,
the filter size of the last max-pooling layer can be adjusted to the
required level. For example, if thefilter size of the lastmax-pooling
layer in the visible light stream is set to 5 � 4, the size of the last
feature map of that stream changes to 32 � 4 � 10 instead of 32 �
6�13. Therefore, the size of the flattened feature vector is reduced
by 50%, from 2496 to 1280. Thismeans that the visible light stream
weights half asmuch as the thermal input.

4. Results
This work implements CNN with different structures using the

Keras backend with TensorFlow (Géron 2019). The coefficients of
the deep neural network are learned by optimizing the cost func-
tion using the Adadelta method (Zeiler 2012). The average train-
ing time for a single-stream CNN model, developed using the
base dataset, is 44 seconds per iteration on an NVIDIA GeForce
GPU (GTX1060 3GB). The average training time for a dual-stream
CNNmodel is 48 seconds per iteration on this setup. The labels of
4244 images were predicted in 30 s, which implies that each pre-
diction took place in under 10ms.

4.1. Performancemeasures
To evaluate the performance of the proposed system, different

error measures such as multiple-class average and weighted aver-
age of Precision, Recall, and F1-Score are used. Table 2 shows the
confusion matrix obtained by the dual-stream CNNmodel on the
test set of the base dataset. The rows of the confusion matrix are
the observed labels of each pair of visible light and thermal images,
and the columns are the predicted labels by the CNNmodel.
The Precision measure of a particular class is the ratio of the

correctly classified samples of that class to the total number of
predicted samples of the same class. For example, the Precision
of the snowy class is 42 divided by 47. The Recall measure of a par-
ticular class is the ratio of correctly classified samples of that
class to the total number of observed samples of the same class.
For example, the Recall of snowy class is 42 divided by 50. The Pre-
cision and Recall can be calculated for each class individually.
Finally, the F1-Score (eq. 3) measure is estimated by calculating
the harmonicmean of Precision and Recall.

ð3Þ F1-Score ¼ 2� Precision� Recall
Precisionþ Recall

To compare different CNNmodels, each measure is aggregated
in two ways. First, the average of each measure over the four
classes is calculated (eqs. 4–6).

ð4Þ Precisionaverage ¼
X4

i¼1
Precisioni

X4

i¼1
1 ¼ 4

ð5Þ Recallaverage ¼
X4

i¼1
Recalli

X4

i¼1
1 ¼ 4

Fig. 5. The single-stream CNN model: (a) first part and (b) second
part.
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ð6Þ F1-Scoreaverage ¼
X4

i¼1
F1� Scorei

X4

i¼1
1 ¼ 4

Additionally, the weighted average of each measure is calcu-
lated (eqs. 7–9), where the weights are proportional to the num-
ber of samples in each class.

ð7Þ Precisionweighted ¼
X4

i¼1
Precisioni � ni
X4

i¼1
ni

ð8Þ Recallweighted ¼
X4

i¼1
Recalli � ni
X4

i¼1
ni

ð9Þ F1-Scoreweighted ¼
X4

i¼1
F1� Scorei � ni
X4

i¼1
ni

where i is the class ID that corresponds to the snowy, icy, wet,
and slushy classes, and ni is the number of samples in the ith
class.
The average Precision, Recall, and F1-Score of the dual-stream

CNNmodel are 92.7%, 91.0%, and 91.8%, respectively. Considering
the number of samples in each class, the weighted average of
these three measures is 94.0%. In the following sections, in-depth
sensitivity analysis and comparison of differentmodels and datasets
have been discussed. First, the dual-streammodel is compared with
two single-stream models. Second, the ratio of the combination of
each stream in the dual-streammodel is reduced by 50%. Third, the
performance of the dual-stream model on alternative datasets (dis-
cussed in Table 1) is assessed.

4.2. Input configuration evaluations
The two single-stream and one dual-stream CNN models were

fine-tuned and optimized with the training set of the base data-
set, and their performances are evaluated on the test data and
are presented in Table 3. In addition to the classification results

Fig. 6. The dual-stream CNN model: (a) first part and (b) second part.

Table 2. Confusion matrix of the dual-stream CNN over the test set of the base dataset.

Classified (predicted) label Error measure

Snowy Icy Wet Slushy Total Precision Recall F1-score

Observed label Snowy 42 8 0 0 50 0.894 0.840 0.866
Icy 5 317 0 12 334 0.922 0.949 0.935
Wet 0 2 297 2 301 0.983 0.987 0.985
Slushy 0 17 5 142 164 0.910 0.866 0.888
Total 47 344 302 156 849 — — —

Average — — — — — — 0.927 0.910 0.918
Weighted average — — — — — — 0.940 0.940 0.940
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of each configuration, the ground truth (the number of observed
samples in each category) of training and test sets are presented
in the 4th and 8th rows of Table 3.
Amongst the two single-stream CNN models, the model built

by the visible light images performs better than the one using
the thermal images. Using only visible light images, the correct
predictions of the snowy, icy, wet, and slushy samples are 35, 299,
296, and 144, respectively. The thermal camera is used as a com-
plementary source of information, and CNN built by thermal
images provides better results on icy class, correctly predicting
317 of the test samples compared to 299 correct predictions by
the visible light CNN model. The results are similar in the snowy
class, but on wet and slushy classes, using the visible light CNN
provides better results than thermal CNN because the images of
these classes containmore color information.
The dual-stream CNN model improves the classification rate on

snowy and icy classes by 14% and 5.3%. These two classes are crucial
for the objective of such a system. Moreover, the dual-stream CNN
maintains the same performance as the visible light CNN onwet and
slushy classes. This means that the combination of the visible light
and thermal image sources provides more information for the CNN
model regarding the classification ofwinter road surface conditions.
The simple and weighted average values of Precision, Recall, and

F1-Score on the test set also indicate the superiority of the dual-
streammodel. The average Precision, Recall, and F1-Score have been
improved by 4%, 5%, and 5% compared to the visible light model;
and improved by 8%,11%, and 10% compared to the thermalmodel.
Figures 7a and 7b illustrate the visible light and thermal images

of a snowy sample. The predictions by visible light, thermal, and
dual-stream CNN models are snowy, slushy, and snowy condi-
tions. Figures 7c and 7d illustrate the visible light and thermal
images of an icy sample. The predictions by visible light, thermal,
and dual-streamCNNmodels are snowy, snowy, and icy conditions.

In these two examples, only the dual-stream model has correctly
predicted thewinter road condition.

4.3. Tuning input ratio for the dual-stream CNNmodel
In the dual data stream CNN model, the ratio of the combination

of visible light images and thermal images can be adjusted based
upon the concept discussed in Section 3.3. Table 4 presents the classi-
fication results of the sameCNNconfiguration using differentweight
adjustments for each stream. First, the weight of the thermal stream
is set to 0.5, while the weight of the visible light stream weight
remains 1; second, the weight of the visible light stream is set to 0.5,
while the weight of the thermal stream remains 1; third, the weights
of both streams are set to 0.5. The fourth row of Table 4 shows the
results when bothweights remain 1 and no change is applied.
Results from the test set show that reducing the weight of the

thermal image stream by 50%, slightly increases the number of
correct predictions of snowy and slushy classes by 1 and 5 sam-
ples, respectively. Besides, decreasing the weights of both image
streams increases the weighted Precision, Recall, and F1-score by
no more than 1%. This suggests that a CNN model with a smaller
fully connected block, (i.e., halving the first layer of the fully con-
nected block) provides almost the same promising results. In gen-
eral, the performancemeasures are not significantly impacted by
reducing the number of neurons of one data stream, suggesting
that the other data stream compensates for any errors.

4.4. Performance evaluation of alternative datasets
The dual-stream CNN model is chosen as the best model for fur-

ther analysis on different configurations of the database. In this
model, the weights of each image stream are set to 1. In addition to
the base dataset, three variations, outlined in Table 1, are built and
used for training and evaluating the selected CNN model. Table 5
compares the performance of the dual-stream model on the four

Table 3. Classification results of single-stream and dual-stream CNNmodels.

Set CNNmodel

Correct predictions (TP) Average performance Weighted average performance

Snowy Icy Wet Slushy Precision Recall F1-Score Precision Recall F1-Score

Training Visible Light 236 1302 1204 651 1.00 1.00 1.00 1.00 1.00 1.00
Thermal 235 1288 1198 641 0.99 0.99 0.99 0.99 0.99 0.99
Dual-stream 238 1302 1203 650 1.00 1.00 1.00 1.00 1.00 1.00
Ground-truth 238 1302 1204 651 — — — — — —

Test Visible Light 35 299 296 144 0.89 0.86 0.87 0.91 0.91 0.91
Thermal 34 307 271 112 0.85 0.80 0.82 0.86 0.85 0.85
Dual-stream 42 317 297 142 0.93 0.91 0.92 0.93 0.94 0.94
Ground-truth 50 334 301 164 — — — — — —

Fig. 7. Two examples of winter road condition classification: (a) visible light image of a snowy condition, (b) thermal image of (a),
(c) visible light image of an icy condition, and (d) thermal sample of (c).
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different scenarios. The F1-score of the CNNmodel on the test set of
the base dataset is 94.0%. When artificial snowy images are created
and added to the database, the F1-score increases to 94.4%, which
mostly increases the correct predictions of the snowy class.
Adding an extra class of multiple patterns to the database

decreases the F1-score on the test set by 6.1%. This occurs because
the samples of the multiple class have a mixture of snowy, icy,
wet, and slushy patterns, whichmakes the learning and optimiza-
tion of the model’s coefficients difficult. However, the F1-Score of
87.9% implies that the dual-stream CNN model performs well when
used to classify images withmore than one surface condition.
Finally, the performance of the model is evaluated by splitting

the original image into two smaller images of 188 � 184 pixels. In
this configuration, the weighted average F1-score of the CNN model
is decreased by 3.4% which can be explained by the reduced number
of parameters in the model, and by the fact that the smaller images
may have less informative pixels. Although the performance of
the dual-stream model is degraded, the capacity of the system is
increased because it can classify more images at the same time.
Besides, since an image is split into two images, the CNNmodel can
classify two surface conditions per imagewith an F1-Score of 90.6%.

5. Conclusion
Automatic winter road conditionmonitoring and classification

is crucial for winter maintenance operations, especially in coun-
tries with a long and cold winter like Canada. This research devel-
ops an image-based road monitoring method based on the fusion
of the thermal and visible light cameras and evaluates its perform-
ance by using data collected from the road surface in Montreal
during the winter. Several CNN models are implemented and
tested, including two single-stream models that use either visible
light or thermal images as their input source, and a dual-stream
model that uses both visible light and thermal image images.
The F1-Score results show that the dual-stream CNNmodel out-

performs the two single-stream CNN models. The F1-Score of the
dual-stream model is 0.866 for snowy, 0.935 for icy, 0.985 for wet,
and 0.888 for slushy surface conditions. Furthermore, the comparison

between the two single-stream models reveals that the classifica-
tion of snowy, wet, and slushy images reliesmore on color informa-
tion from the visible light camera, but icy images are detected and
classified better by the thermal camera because they show sharper
temperature maps. Moreover, the comparison of different input
weight adjustments on the dual-stream CNN setup indicates that
reducing the weight of each data stream or both have a negligible
impact on the systemperformance.
As part of this research, four dataset variations derived from the

collected images are used for the sensitivity analysis. Adding artifi-
cially created snowy images to the dataset improves significantly
the performance of the dual-stream CNN on snowy class; however,
it encountered an overfitting issue on the training set. In another
scenario, splitting original images into small sub-images degrades
the classification performance because the split sub-images con-
tain less relevant information, However, the system becomes ca-
pable of classifying two surface conditions in each image with an
F1-Score of 90.6%.
There are some limitations to this research. First, a fixed setup

of the thermal and visible light cameras is required because the
difference in the field of view between visible light and thermal
cameras may lead to an unwanted error in the pixel-to-pixel
matching of visible light and thermal images. Second, in this
work, a few hours of winter surface condition data have been col-
lected. As for future work, the CNN models can benefit from a
longer period of data collection in different street types under
diverse weather conditions during the winter season. Additional
classes such as black ice could also be added. Moreover, instead of
labeling the entire image with a single category, every single image
could be annotated and labeled by the cover type. Moreover, a 3D
imaging system such as LiDAR or stereo camerawith depth informa-
tion can also be integrated into the system.

Data availability
The Montreal Winter Road Surface Dataset used to support the

findings of this study is available from the corresponding author
upon request.

Table 5. Classification results of the dual-stream CNN on different datasets.

Set Scenarios

Average performance Weighted average performance

Precision Recall F1-Score Precision Recall F1-Score

Training Base 0.999 0.999 0.999 0.999 0.999 0.999
Artificial 1.000 1.000 1.000 1.000 1.000 1.000
Multiple 0.998 0.995 0.997 0.998 0.998 0.998
Split 0.998 0.999 0.998 0.999 0.999 0.999

Test Base 0.927 0.910 0.918 0.940 0.940 0.940
Artificial 0.936 0.939 0.937 0.944 0.944 0.944
Multiple 0.858 0.859 0.858 0.869 0.891 0.879
Split 0.873 0.872 0.873 0.906 0.906 0.906

Table 4. Classification results of the dual-stream CNNwith different input ratio.

Set Streamwith halved neurons

Correct prediction (TP) Average performance Weighted average performance

Snowy Icy Wet Slushy Precision Recall F1-score Precision Recall F1-score

Training Thermal 238 1301 1204 651 1.00 1.00 1.00 1.00 1.00 1.00
Visible light 238 1302 1204 651 1.00 1.00 1.00 1.00 1.00 1.00
Both 238 1300 1204 650 1.00 1.00 1.00 1.00 1.00 1.00
None 238 1302 1203 650 1.00 1.00 1.00 1.00 1.00 1.00
Ground-truth 238 1302 1204 651 — — — — — —

Test Thermal 43 315 296 147 0.92 0.92 0.92 0.94 0.94 0.94
Visible light 36 316 297 149 0.92 0.89 0.91 0.94 0.94 0.94
Both 45 318 298 143 0.94 0.93 0.93 0.95 0.95 0.95
None 42 317 297 142 0.93 0.91 0.92 0.94 0.94 0.94
Ground-truth 50 334 301 164 — — — — — —
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