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A B S T R A C T   

In the era of transportation big data, the analysis of mobility patterns generally involves large 
quantities of datasets with high-dimensional variables recording individual travelers’ activities 
and socio-economic attributes, bringing new challenges to researchers. Conventional regression- 
based models commonly require complex structures in depicting random or fixed effects with a 
considerable number of parameters to estimate, and state-of-the-art machine learning models are 
regarded as black-boxes that are not clear in interpreting the mechanism in human mobility. To 
overcome the challenges of capturing complex high-order relationships among variables of in-
terest, this paper proposes a Bayesian supervised learning tensor factorization (BSTF) model for 
the classification of travel choices in the mobility pattern analysis. The BSTF model induces a 
hierarchical probabilistic structure between predictor variables and the dependent variable, 
which offers a nature supervised learning foundation via Bayesian inference. Latent class (LC) 
variables are considered in the BSTF model to discover hidden preferences/states among travelers 
associated with their mobility patterns. We apply the BSTF model to analyze passenger-side 
choice patterns between diverse service options on a ride-sourcing platform, drawing 
increasing attention during recent years. A case study with a real-world dynamic ridesharing 
dataset in Hangzhou, China, is conducted. Different cases of training sizes are utilized to fit the 
proposed BSTF model as well as some other state-of-the-art machine learning models. By iden-
tifying significant variables and derive their probabilistic relationship between service types (i.e., 
ridesharing, non-sharing, and taxi), the proposed BSTF model offers good performance in both 
classification accuracy and the interpretability of shared mobility.   

1. Introduction 

Modeling mobility patterns is an essential component in transportation planning and travel demand analysis. Accurate prediction 
of mobility attributes, such as aggregate travel mode choice and destination choice, is critical to a wide range of operations and 
planning applications, such as traffic management, congestion mitigation, and transportation system design. With the rapid advances 
in transportation systems, understanding the patterns of travel choices becomes increasingly important due to the introduction of new 
services/modes (e.g., scooters, electric bikes, and shared mobility) and the changes in people’s lifestyle and preferences (e.g., 
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encouraging sustainable transport). 
One of the main tasks in analyzing mobility patterns is to build classification models which can (a) capture the complex de-

pendencies and interactions among a set of predictor variables such as trip attributes (e.g., travel time, and distance), and socio- 
economic attributes (e.g., land-use attributes of the origin/destination); and (b) characterize the underlying human mobility mech-
anism based on behavior or probability theorems. A good model is expected to identify critical attributes from the broad set of var-
iables and characterize the interactions/dependencies among them. Researchers in transportation and economics have begun to study 
mobility patterns with respect to travelers’ decision-making behaviors since the introduction of discrete choice models in the 1970s 
(McFadden, 1973). A large number of choice models have been developed based on different techniques, including psychological, 
economic, and supervised machine learning approaches (e.g., Ben-Akiva and Lerman, 1985; Hensher and Ton, 2000; Train, 2009; Dias 
et al., 2017; Zhu et al., 2019a, 2021). These models are fundamental to the establishment of human mobility science. 

Thanks to the fast development of information and communication technologies, large quantities of temporal and spatial datasets 
that record individual travelers’ activities and socio-economic attributes become available. In the analysis of travel choices and 
mobility patterns, since a categorical setting is usually required for variables such as income, education, point of interest, mode type, 
enlarged dimensionality, and sample size in mobility datasets, bring new challenges for model development. Conventional regression- 
based models become less appealing due to their limited capability in dealing with the nonlinearity and higher-order dependencies 
among a large number of attributes. One needs to include model parameters for each categorical level of the categorical variables; 
many more parameters are created when modeling the interactions among these variables. Supervised learning models—such as 
Neural Networks (NN) and Random Forest (RF)—provide a data-driven paradigm to characterize higher-order interactions in mobility 
analysis problems, and these models have shown superior performance compared to traditional regression-based models (e.g., Hensher 
and Ton, 2000; Zhang and Xie, 2008; Zhu et al., 2018). However, due to the data-driven nature, the theoretical basis of these machine 
learning models for interpreting and understanding the human mobility mechanism becomes an emerging concern that prevents 
practitioners from adopting them in real-world applications (Brathwaite et al., 2017). Some researchers have tried to conduct 
dimensionality reduction, such as principal component analysis (PCA), to the datasets, and then used the first few principal compo-
nents to build a simple regression model (Miller and Mohammadian, 2003). However, the components are not precise in interpretation, 
and the accuracy is not good due to the missing information. Brathwaite et al. (2017) provided the microeconomic basis for decision 
tree (DT) models in travel decision-making. More efforts are awaited, and a significant and urgent research issue is to understand 
people’s modern travel patterns and make accurate choice classification simultaneously. 

In this paper, we propose to integrate probabilistic tensor factorization with Bayesian supervised learning for travel choice and 
mobility pattern analysis. By capturing the nonlinear and higher-order dependencies among the predictor variables, the proposed 
Bayesian supervised learning tensor factorization (BSTF) model offers both high classification accuracy interpretability on mobility 
patterns. The BSTF model incorporates latent class (LC) structures to provide hidden probabilistic dependencies between travelers’ 
choices and predictor (manifest) variables. A mobility mechanism is built upon the Bayesian inference for the LC variables and the 
dependent variable given the predictor variables. This hierarchical structure allows us to build efficient Markov chain Monte Carlo 
(MCMC) sampling algorithms for model estimation. A categorical variable setting is used in this BSTF framework to better interpret the 
high-order dependencies via probability tables. 

We apply the BSTF model to analyze the mobility pattern of ridesharing, which has a high-dimensional dataset with categorical 
variables. At present, the percentage of ridesharing orders in ride-sourcing markets is still low (Li et al., 2019). It was pointed out that a 
good understanding of passengers’ preferences is essential to the success of a dynamic ridesharing program (Agatz et al., 2012). As 
demonstrated in previous studies, the passengers’ service type choice will, in return, affect the operation and performance of each ride- 
sourcing or other service options (Ke et al., 2017; Zhu et al., 2020). Moreover, the modeling results also help researchers and TNCs 
better understand the aggregate performance (i.e., patterns of passenger waiting time and travel time) of the ridesharing program. Pre- 
trip information provision can be implemented by the platform to attract more ridesharing passengers. However, far efforts have 
primarily been directed toward the design of algorithms to efficiently match drivers and passengers on short notice in a dynamic 
ridesharing environment (e.g., Agatz et al., 2012; Wang et al., 2017). More research efforts are needed to identify critical factors 
affecting passengers’ willingness to “share a ride” and examine their quantitative effects on ridesharing decisions (Dias et al., 2017). As 
a real-world application, Didi Chuxing’s order data and land-use GIS data in Hangzhou, China, are fused for the ridesharing mobility 
pattern analysis. We evaluate the performance of BSTF with respect to the classification accuracy and compare it with other state-of- 
the-art supervised machine learning models as benchmarks. Also, we look into travelers’ preferences via the latent patterns and 
interpret the choice-making mechanism of dynamic ridesharing in the ride-sourcing market. 

The major contributions of this paper include: (a) proposing a supervised learning approach, i.e., the BSTF model, which provides a 
closed-form hierarchical probabilistic structure and leads to high classification accuracy in mobility pattern analysis studies; (b) 
interpreting and understanding passengers’ dynamic ridesharing patterns via the hierarchically probabilistic structure of the BSTF 
model. The BSTF model is reliable in solving classification problems with high-dimensional and massive datasets, which is not limited 
to mobility analysis. Additionally, the LC structure and the underlying conditional probabilistic relationship offers an intuitive way to 
understand the complex human mobility mechanism behind critical predictor variables and travelers’ choices. 

The remainder of the paper is organized as follows. Section 2 presents a literature review on travel choice models and travel de-
cision classification models, as well as ridesharing studies based on these models. We also review some signature applications of tensor 
factorization (TF) in transportation research. Section 3 presents the proposed BSTF model, including its key assumption, formulation, 
and MCMC-based model estimation. Section 4 undertakes a real-world case study on dynamic ridesharing pattern analysis with DiDi 
ride-sourcing order data. The introduction of the dataset, the classification accuracy of the BSTF model and the benchmarks, and the 
characterized mechanism of passengers’ ridesharing choices via probabilistic inference are covered. Finally, Section 5 concludes this 
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paper and discusses future research directions. 

2. Literature review 

In this section, we first explore the state-of-the-art methodologies on travel choice modeling and classification. Identifying research 
gaps leads us to propose a classification approach that is superior in both model interpretability and classification accuracy. We also 
provide existing studies on ridesharing. 

Researchers in transportation and economics have begun to study travelers’ decision-making mechanism since the introduction of 
the multinomial Logit (MNL) model in the 1970s (McFadden, 1973). Originated from econometric formulation, the behavior foun-
dation of the MNL model is restricted to the random utility (RU) theorem, which assumes that a person chooses the alternative with the 
maximal utility. The contribution of each predictor variable towards the dependent variable is clear through the linear formulation of 
utility. The estimation of utility function parameters can help understand the relative importance of different travel attributes and 
socio-economic variables in decision-making. The model also considers the hidden causal factors not included in the utility function as 
one alternative-specific constant. The MNL family has been extended by considering the correlation term between different alterna-
tives, including nested Logit models (de Dios Ortuzar, 1983), generalized extreme value model (Small, 1987), Bayesian nested Logit 
(Poirier, 1996), continuous cross-nested Logit models (Lemp et al., 2010), LC Logit models (Kamargianni et al., 2015), and continuous- 
discrete choice models (Bhat, 2018). 

Another major trend of travel choice modeling is to use machine learning techniques to classify a traveler’s choice given predictor 
variables. Without the requirement of a predetermined model structure, machine learning focuses on data and tries to find connections 
among variables. The flexibility in the model structure makes it possible to offer insights into the relations that RU models cannot 
recognize. Machine learning methods can handle large-size datasets, saving much time in the model estimation, finding more complex 
relations compared with RU-based discrete choice models, and providing high classification accuracy. However, in travel choice and 
mobility pattern research, it is not clear to interpret humans’ decision-making mechanisms by using most machine learning methods. 
There are several types of machine learning models frequently adopted in the classification of travelers’ choices, e.g., DT models (Wets 
et al., 2000), NN models (Hensher and Ton, 2000), mixed Bayesian network (BN) models (Zhu et al., 2018), support vector machine 
(SVM) (Zhang and Xie, 2008), and ensemble learning (Chen et al., 2017). 

To interpret the patterns of travelers’ choices and maintain high classification accuracy, we propose a Bayesian supervised learning 
approach based on TF in this paper. TF is a method to summarize a high-dimensional dataset into a tensor (i.e., a high-order array). It 
has gained popularity in various fields such as data mining, signal processing, statistics, etc. (Shashua and Hazan, 2005; Kolda and 
Bader, 2009). In the field of transportation research, TF also attracts increasing attention. Tan et al. (2013) integrated the expect-
ation–maximization algorithm with Tucker decomposition to impute the missing data in a temporal traffic dataset. CANDECOMP/ 
PARAFAC (CP) decomposition has been used in analyzing temporal (Dunlavy et al., 2011) and spatial–temporal patterns of traffic flow 
(Han and Moutarde, 2016). Sun and Axhausen (2016) proposed an unsupervised probabilistic TF model to understand urban mobility 
patterns. The research team also integrated the probabilistic TF model with an LC model and a rejection sampling model for population 
synthesis (Sun et al., 2018) and utilized probabilistic TF for spatial imputation (Zhang et al., 2019; Chen et al., 2020). In contrast to 
unsupervised TF models, Tan et al. (2016) developed a dynamic TF model for short-term traffic prediction. Chen et al. (2019a) and 
Chen et al. (2019b) proposed an augmented TF model for missing traffic data imputation. In these studies, TF based models show 
superior performance compared with existing prediction methods. By adopting the probabilistic TF in a supervised learning approach, 
the proposed BSTF model provides a convenient approach for mobility patterns and other data-driven transportation research. 

Based on but not limited to those above conventional discrete choice and machine learning approaches, there have been studies 
focusing on ridesharing mobility patterns. Miller et al. (2005) developed a tour-based mode choice mixed Logit model, in which 
traditional ridesharing was incorporated by adding a constraint on household vehicle allocation. Concerning travelers’ intra- 
household interactions, activity-based logit models were developed to identify significant predictors (e.g., work schedules, auto 
availability, and presence of children) related to shared rides (Gliebe and Koppelman, 2002). The analyses of traditional ridesharing 
were primarily based on stated preference survey datasets. The coordination of traditional ridesharing was recognized as a within- 
household activity (Morency, 2007). In terms of non-household ridesharing, factors such as time conflicts (Giuliano, 1992; Fergu-
son, 1997), monetary saving (Correia and Viegas, 2011), parking (Su and Zhou, 2012), environmental awareness (Wang et al., 2020), 
and walking distance (Hunt and McMillan, 1997) were found of great importance. A detailed review can be found in Neoh et al. (2017), 
in which the authors applied meta-analysis to explore key predictors of ridesharing. Due to the availability of timely door-to-door 
service, participants’ (i.e., both passengers’ and drivers’) mobility patterns under the dynamic ridesharing market can be substan-
tially different compared with traditional ridesharing. Chen et al. (2017) applied ensemble learning to classify dynamic ridesharing 
decisions, and they claimed trip attributes (e.g., travel time, surge pricing ratio, trip fee, and trip distance) were critical for ridesharing 
classification. Dong et al. (2018) utilized an unsupervised learning approach to classify ridesharing drivers based on commuting styles 
and detour patterns. Exploring the modeling results of these studies, we note that: (a) classification accuracy is one of the most critical 
issues, for which reason machine learning approaches are preferable in recent ridesharing studies; (b) more research efforts are 
awaited to improve the interpretability (i.e., the basis for modeling humans’ choice-making in machine learning) and to understand 
the quantitative influence of different predictors on travelers’ dynamic ridesharing patterns. To address these issues, we apply the 
proposed BSTF model to real-world dynamic ridesharing analysis. The specific application also demonstrates the superiority of the 
BSTF model. 
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3. Bayesian supervised learning tensor factorization 

In this paper, identifying a traveler’s choice (on ride-sourcing service type) is recognized as a classification problem, which is also a 
supervised learning problem. This section introduces the concept of Bayesian supervised learning and formulates the BSTF model. The 
analytical foundation and model estimation algorithm are discussed at last. 

3.1. Problem description of Bayesian supervised learning 

Statistical classification is needed across numerous scientist disciplines, in which some kinds of supervised learning algorithms are 
often required. The focus of supervised learning with high-dimensional predictor variables will not be directly on selecting variables 
but on the description of the classification and inference rules. 

Let X1, ...,Xp denote predictor variables, and Y denote the categorical classification variable. The goal of a general classification 
model is to induce rule f : x1,…,xp → y, where xj denotes the value of predictor Xj, y denotes the categorical value of Y. Unlike other 
classification approaches, which assume f to be some deterministic mapping from X1, ...,Xp to Y (e.g., NN, and SVM), Bayesian su-
pervised learning treats X1, ...,Xp and Y as random variables that are sampled from some joint probability distribution. The proba-
bilistic formulation is as follows: 

W|αpα̃ (1)  

where W denotes the random vector of 
{
X1, ...,Xp,Y

}
. The probability density function (PDF) of W is denoted as pα, which is deter-

mined based on parameter α. Thereby, the classification rule can be expressed as a probabilistic inference below: 

f : argmax
y∈Υ

P
(
y|x1,…, xp

)
(2)  

where Υ denotes the set of Y, P(∙) denotes probability operator. The conditional probability of y given x1,…, xp is calculated based on 
joint PDF pα. Suppose we have a sample of n data records, i.e., wi =

{
xi,1, ..., xi,p, yi

}
, i = 1,...,n. A general approach to estimating α is to 

use likelihood maximization: 

argmax
α

∑

i
L(α|wi) (3)  

where L(α|wi) = pα(wi) denotes the likelihood of observing sample i. 
In a travelers’ choice classification problem, X1, ...,Xp can be a list of socio-economic variables and travel attributes variables, and Y 

is the categorical decision (i.e., mode, departure time or service type). The assumption on the joint probability distribution in Eq. (1) 
plays an essential role in classification accuracy and model interpretability. 

Conventional approaches, such as MNL discrete choice models, have been preferable among researchers to solve the classification 
problem. Based on the formulation of utility functions with respect to different choices (e.g., modes or departure times), researchers 
attempt to estimate the coefficients of different features associated with the decision-making mechanism. However, once the dataset is 
with high-dimensional variables of interest, it can be difficult for conventional models to comprehensively consider all possible 
outcomes. This is because the utility functions should include not only the interested variables themselves but also the variables 
created based on their interactions. Thereby, many model structures and their corresponding large number of parameters need to be 
estimated and evaluated. To overcome the high-dimensional issue, we utilize a BSTF model for this research task. The BSTF model can 
characterize the high-order data structure to a lower-dimensional data of only vital predictors in a supervised learning problem. 

Moreover, insights on humans’ mobility preferences and patterns are usually expected in travel choice classification problems. For 
instance, a discrete choice model from the MNL family generally needs a hypothesis on whether travelers’ choice is sensitive to some 
specific variables. Machine learning models, which attract increasing attention due to their high accuracy in solving classification 
problems, are usually treated as black-boxes. Although some of them (e.g., DT model) characterize the choice-making mechanism as a 
rule-based process, most state-of-the-art machine learning models do not provide deep human mobility insights. Unlikely, the BSTF 

Fig. 1. An illustration of HOSVD.  
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model is based on a full hypothesis in which all the variables are correlated with the dependent variable. The model estimation process 
of the BSTF model is to identify critical variables and provide interpretability on mobility patterns through a hierarchically proba-
bilistic structure. The hierarchical structure with LC variables provides an alternative to interpret nonlinear relationships between the 
vital variables and the dependent variable. Detailed formulations will be introduced in Sections 3.2 and 3.3. 

3.2. Bayesian supervised learning based on tensor factorization 

The BSTF model was developed based on the integration between supervised learning and higher-order singular value decom-
position (HOSVD). HOSVD was first proposed by Tucker (1966) as a three-way data decomposition that fits the relation between a 
three-way target tensor T =

{
tx1 ,x2 ,x3

}
and variables X1, X2, and X3 through a core tensor G (i.e., Fig. 1). 

The model was extended to high-order by de Lathauwer et al. (2000), such that, with p predictor variables X1, ...,Xp, the target 
tensor T =

{
tx1 ,...,xp

}
is generated by all the predictor variables as follows: 

tx1 ,...,xp =
∑k1 − 1

z1=0
...
∑kp − 1

zp=0
gz1 ,...,zp

∏p

j=1
u j

zjxj
(4)  

where kj, j = 1, ..., p denotes the rank of predictor variable Xj, G =
{

gz1 ,...,zp

}
denotes the core tensor, Uj =

{
uj

zjxj

}
denotes the factor 

matrix of variable Xj. Since kj⩽
⃒
⃒Xj

⃒
⃒, the HOSVD model incorporates a natural LC structure. We consider a categorical setting, such that 

variable Xj can take dj states (i.e., 
⃒
⃒Xj

⃒
⃒ = dj and the states are indexed by 0, ...,dj − 1). Thereby, kj can represent the number of LCs of 

variable Xj. We use an LC variable Zj, whose value is denoted as zj, to refer to the LC of Xj. The mapping from category xj to LC zj is 
characterized by the factor matrix. Hereafter, predictor variables X1, ...,Xp are also referred as manifest variables to distinguish from LC 
variables Z1, ..., Zp. The introduction of LC provides a lower rank approximation of T, and it can lead to high accuracy (Vannieu-
wenhoven et al., 2012). Moreover, the lower rank approximation can reduce the number of parameters for model estimation. This 
feature brings convenience for high-dimensional probabilistic factorization (Sun and Axhausen, 2016; Yang and Dunson, 2016). 

A nonnegative version of HOSVD was proposed, which offered insights to formulate an unsupervised learning probabilistic TF 
model (Kim and Choi, 2007). Following the same structure as Eq. (4), a probabilistic TF is formulated as follows: 

P
(
Z1 = z1, ...,Zp = zp

)
= βz1 ,...,zp

(5)  

P
(
Xj = xj|Zj = zj

)
= κj

zj

(
xj
)

(6)  

P
(
X1 = x1, ...,Xp = xp

)
=

∑k1 − 1

z1=0
...
∑kp − 1

zp=0
βz1 ,...,zp

∏p

j=1
κ j

zj

(
xj
)

(7)  

κj
zj

(
xj
)
⩾0, βz1 ,...,zp

⩾0,
∑kj − 1

zj=0
κj

zj

(
xj
)
= 1 (8)  

where B =
{

βz1 ,...,zp

}
denotes the core probability tensor; Kj =

{
κj

zj

(
xj
)}

denotes the probability factor matrix of manifest variable Xj. 

The core probability tensor captures the interaction between LC variables, and a factor matrix is regarded as a probability matrix for 
mapping a manifest variable to its LC. The target tensor (see Eq. (7)) acts as the probability that an observed Xi = x1, ...,Xp = xp is 
characterized by the combination of the corresponding LCs Zi = z1,...,Zp = zp. As an unsupervised learning model, the number of LCs 
for each manifest variable is predetermined, and the underlying data stream from Xi to Zi then to Xi is not capable of solving classi-
fication problems (Sun and Axhausen, 2016; Sun et al., 2018). 

Inspired by Yang and Dunson (2016), the proposed BSTF model aims to integrate Bayesian supervised learning into probabilistic 
factorization to deal with high-dimensional classification problems. Suppose that dependent variable Y has d labels indexed by 
{0, ..., d − 1}, |Υ| = d, the BSTF model is formulated in a conditional probability context as follows: 

P
(
Y = y|Z1 = z1, ..., Zp = zp

)
= λz1 ,...,zp (y) (9)  

P
(
Zj = zj|Xj = xj

)
= πj

zj

(
xj
)

(10)  

P
(
Y = y|X1 = x1, ...,Xp = xp

)
=

∑k1 − 1

z1=0
...
∑kp − 1

zp=0
λz1 ,...,zp (y)

∏p

j=1
πj

zj

(
xj
)

(11)  

πj
zj

(
xj
)
⩾0, λz1 ,...,zp (y)⩾0,

∑kj

zj=1
πj

zj

(
xj
)
= 1,

∑d

y=1
λz1 ,...,zp (y) = 1 (12)  

where Λ(y) =
{

λz1 ,...,zp (y)
}

denotes the core conditional probability tensor for the dependent category to be y; Πj =
{

πj
zj

(
xj
)}

denotes 
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the conditional probability factor matrix for manifest variable Xj. For simplification, we use Π to denote matrix 
{

Πj}, Λ to denote 
tensor{Λ(y) } and K to denote vector 

{
kj
}
. Variables X1, ...,Xp are mutually independent from each other1; and the category of variable 

Y only depends on LC variables Z1,...,Zp. The BSTF model is suitable for the high-dimensional classification problem defined in Section 
3.1. Substituting Eq. (11) into Eq. (2), we obtain the classification rule for the BSTF model as below. 

f : argmax
y∈Υ

∑k1 − 1

z1=0
...
∑kp − 1

zp=0
λz1 ,...,zp (y)

∏p

j=1
πj

zj

(
xj
)

(13) 

For categorical variables, the BSTF model shown in Eqs. (9)-(12) is equivalent to the following conditional probabilistic setting: 

Y|Z1 = z1, ...,Zp = zp ∼ Cat
(
λz1 ,...,zp (0), ..., λz1 ,...,zp (d − 1)

)
(14)  

Zj|Xj = xj ∼ Cat
(

π j
0
(
xj
)
, ..., π j

kj − 1
(
xj
) )

(15)  

where Cat(u1, ..., uS) denotes a Categorical distribution with S states and the probability of observing state s is us. The categorical 
distribution is a Multinomial distribution with only one trial. The conditional probabilistic formulation in Eqs. (14)-(15) provide a 
convenient way for Bayesian model estimation. With some specific assumptions on the prior distributions of Π and Λ, the observed 
data samples and Bayesian conditional probability theorem are adopted to estimate their posterior distribution. We utilize the Dirichlet 
distribution, which is the conjugate prior for the categorical distribution, as the prior distribution of Π and Λ, such that 

λz1 ,...,zp (0), ..., λz1 ,...,zp (d − 1) ∼ Dir
(

1
d
, ...,

1
d

)

(16)  

π j
0
(
xj
)
, ..., π j

kj − 1
(
xj
)
∼ Dir

(
1
kj
, ...,

1
kj

)

(17)  

where Dir(v1, ..., vS) denotes a Dirichlet distribution with parameters v1, ..., vS. The adoption of Dirichlet distribution is not merely 
motivated by the convenience in the model estimation, but also by its capability in modeling travelers’ choices among alternatives that 
are independent except for a constraint (Zhu et al., 2019b). 

There are two types of unknown parameters that make the model estimation a complex problem: (a) model structural vector K; and 
(b) conditional probabilistic matrices Π and Λ. We regard the estimation of the former parameters as structure learning and the latter 
as parameter learning. The structure vector K determines the model complexity. That is, a higher kj leads to more probabilistic pa-
rameters to estimate. If some kj equal 1, the corresponding manifest variable can be excluded from the model to simplify the parameter 
learning process. Once K is determined, Π and Λ can be estimated via existing statistical approaches, such as MCMC sampling, 
expectation–maximization, etc. 

3.3. Structure learning of the BSTF model 

With the aforementioned probabilistic formulation and assumption on the prior probability distribution, it is difficult to derive the 
likelihood function of a structure K directly. Thereby, the goodness of a structure K is evaluated based on marginal likelihood (ML), 
which is generally used for a Bayesian statistical model with the following setting: 

W|θ ∼ pθ, θ|β ∼ pβ (18) 

In Eq. (18), the PDF of random variable (or vector) W is denoted as pθ with parameter θ, and θ has a prior PDF pβ and parameter β. 
The ML (for data sample i) is defined to marginalize out the uninterested parameter θ as follows: 

ML(β|wi) =

∫

θ
pθ(wi)pβ(θ)dθ (19)  

where wi is an observed data sample. In the BSTF model, the ML given K can be formulated as: 

ML(K|xi, yi) =

∫

Λ

∫

Π

∑

zi

P(yi|Λ,zi)P(zi|xi,Π)pψ(K)(Λ,Π)dΠdΛ (20)  

where xi denotes vector 
{
xi,1, ..., xi,p

}
, zi denotes vector 

{
zi,1, ..., zi,p

}
, and ψ(K) denotes the parameters for the prior distributions in Eqs. 

(16)-(17). 
The calculation of Eq. (20) is complicated due to multi-layer integrals on Dirichlet distributions. A simplified approximation was 

proposed by Yang and Dunson (2016), which transfers the soft clustering from Xj to Zj to a hard clustering. In other words, πj
zj (xj) can 

only take 0 or 1 in the approximation, eliminating the Dirichlet priors for Π. To obtain Π, we need to specify the hard cluster rule RK. 

1 This assumption will be released via a variables grouping process in Section 3.3 

Z. Zhu et al.                                                                                                                                                                                                             



Transportation Research Part C 124 (2021) 102916

7

For instance, a manifest variable Xj ∈ {0,1,2, 3}, the LC variable Zj ∈ {0,1}, a cluster rule can be fXj→Zj : {{0,2,3} → 0, {1} → 1 }; 
namely, categories 0, 2, 3 for Xj are clustered as LC 0 for Zj, and state 1 is clustered as LC 1. Consequently, the approximated marginal 
likelihood (AML) becomes: 

AML(K,RK |xi, yi) =

∫

Λ

∑

zi

P(yi|Λ,zi)P(zi|xi,RK)pψ(K)(Λ)dΛ (21) 

Since P(zi|xi,RK) takes either 0 or 1, AML reduces to a product of ML of Categorical distribution with Dirichlet priors: 

Fig. 3. Structure learning stage-two: manifest variable grouping.  

Fig. 2. Structure learning stage-one: determining K.  
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AML(K,RK |{w1, ...,wn} ) =
∏

i
AML(K,RK |xi, yi) =

∏

z

∏d− 1
y=0 Γ

(
1
d + NZY(z, y)

)

Γ(1 + NZ(z) )Γ
(

1
d

)d (22)  

NZY (z, y) =
∑n

i=1
I
(
Zi,1 = z1, ..., Zi,p = zp, Yi = y

)
(23)  

NZ(z) =
∑n

i=1
I
(
Zi,1 = z1, ..., Zi,p = zp

)
(24)  

where I(⋅) is the indicator function; NZY(⋅) and NZ(⋅) are counting functions for the specified combination of LC variables Z1, ...,Zp and 
dependent variable Y. Many algorithms (e.g., genetic algorithm, simulation-based optimization (Chen et al., 2015), and MCMC) can be 
adopted to seek the optimal structure with a high AML. 

In this paper, we propose a two-stage structure learning process as follows: (a) stage-one determines an initial model structure and 
excludes insignificant manifest variables; and (b) stage-two attempts to group the significant manifest variables obtained from stage- 
one, which releases the assumption in Section 3.2 such that variables X1, ...,Xp are mutually independent of each other. Stage-two is 
necessary because the mutually independent assumption may ignore the correlation among some manifest variables. For instance, the 
conditional dependency structure Z0,1|{X0,X1} may be more reasonable than Z0|X0 and Z1|X1 if manifest variables X0 and X1 are highly 
correlated. Compared with the simplified one-stage algorithm provided by Yang and Dunson (2016), our two-stage algorithm extends 
the BSTF model to generalized classification problems with variables of different ranks (number of categories) and correlations. 

The proceeding of the stage-one algorithm is depicted in Fig. 2, in which M1 is the total number of iterations for determining the 
optimal K. We initialize the process by setting kj = 1, and calculate the corresponding AML. Within each iteration, the algorithm visits 
each of the manifest variables to randomly increase or decrease kj. After changing kj, temporary K1 and R1

K are obtained to evaluate a 
corresponding AML. The acceptance of the new K1 and R1

K will be based on the comparison between the current AML and the tem-
porary AML via the stochastic search MCMC (SS-MCMC) algorithm (George and McCulloch 1997). 

Fig. 3 illustrates the manifest variable grouping algorithm for stage-two. In this figure, MG denotes the number of iterations, Gro 
denotes the grouping rule of the manifest variables, KG denotes the model structure after grouping, RKG denotes the clustering rule 
with KG, and MC denotes the number of sub-iterations to determine the LC structure KG of a grouping Gro. We use a sample example to 
present the proceeding of the algorithm. Suppose manifest variables X0, X3 and X4 are found significant in the first stage (i.e., k0 > 1, 
k3 > 1, and k4 > 1). To initialize, Gro will have three groups, i.e., Gro = {{0}, {3}, {4} }; KG and RKG are obtained from stage-one such 
that KG = {k0, k3, k4} and RKG = RK. For each iteration, the algorithm randomly combines or splits the groups in the existing Gro to 
obtain a temporal Gro1. If a group g only has one manifest, i.e., g = {j}, the corresponding kg is set to be kj obtained from structure 
learning stage-one; otherwise, its kg is set to 2. Continue with the example, after a random combination, the model structure can be 
Gro1 = {{0,4}, {3} }, KG1 = {2, k3}. A random mapping from Gro1 to KG1 is adopted to generate an initial classification rule R1

KG. 
After obtaining Gro1, KG1, and R1

KG, the algorithm will determine the local best KG1 under grouping rule Gro1. Similar to structure 
learning stage-one, for each sub-iteration, the algorithm randomly increases or decreases kg for the groups g which have more than one 
manifest variable; then temporal KG2 and R2

KG are obtained. The local best KG1 and R1
KG will be updated based on the comparison of the 

AMLs. After the sub-iteration loop, the temporal grouping rule Gro1 has a local best KG1 and R1
KG. The decision to update the grouping 

rule is made after comparing the AML of Gro1 and the AML of the current grouping rule Gro, KG and RKG. After the entire iteration loop 
(i.e., MG iterations), the AML obtained from stage-one will be compared with the AML with Gro, KG and RKG to make a final decision on 
the acceptance of the grouping rule. All the acceptance decisions are based on the SS-MCMC algorithm (George and McCulloch, 1997). 

3.4. Parameter learning of the BSTF model 

After learning the model’s structure, we adopt Gibbs sampling as a general approach in Bayesian statistics for parameter learning. 
Based on the prior conjugate assumption in Eqs. (16)-(17), we utilize a four-step Gibbs sampling, which completes a stationary Markov 
chain, to estimate the posterior probabilistic parameters of Π and Λ. For initialization, a random clustering of xi to zi is conducted to 
label each manifest variable of training sample i with a starting LC. Then, we will repeat Steps 1 through 4 below for M2 iterations such 
that the Markov chain can converge: 

Step 1: Sample and update Λ based on Eq. (25). 

λz1 ,...,zp (0), ..., λz1 ,...,zp (d − 1)|− ∼ Dir
(

1
d
+ NZY

(
z1, ..., zp, 1

)
, ...,

1
d

+ NZY
(
z1, ..., zp, d

)
)

(25) 

Step 2: Switch labels for the LCs to speed up the convergence of the algorithm. 
Step 3: Sample and update Π based on Eqs. (26)-(27). 

π j
0
(
xj
)
, ..., π j

kj − 1
(
xj
)
|− ∼ Dir

(
1
kj
+ NZXj

(
0, xj

)
, ...,

1
kj
+ NZXj

(
kj − 1, xj

)
)

(26) 
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NZXj

(
zj, xj

)
=

∑n

i=1
I
(
Zi, j = zj,Xi, j = xj

)
(27) 

Step 4: Sample and update zi based on Eq. (28). 

P
(
Zi, j = zj|−

)
∝λzi,1 ,...,zi, j− 1 ,zj ,zi, j+1 ,...,zi,p (yi)π j

zj

(
xi, j

)
(28) 

In the equations above, symbol |− means the probabilistic relationship is dependent on the entire dataset, i.e., w1, ...,wn in the 
observed manifest dataset and the clustered LC states z1, ..., zn. 

4. A case study based on Hangzhou DiDi and land use data 

Urban mobility has undergone drastic changes in recent years with the introduction of on-demand ride services (or ride-sourcing 
services) provided by transportation network companies (TNCs), such as Uber, Lyft, and Didi Chuxing. By efficient connecting pas-
sengers and dedicated drivers through an online platform (or smartphone app), ride-sourcing services are now playing an increasingly 
important role in meeting mobility needs2. Recently, TNCs are launching and promoting dynamic ridesharing services (also termed as 
ridesplitting services)3. Unlike traditional ridesharing programs, which require users to schedule their trips in advance, dynamic 
ridesharing programs can accommodate on-demand requests and bring advantages in many aspects, including improving the vehicle 
utilization rate, reducing passengers’ cost, increasing drivers’ income, alleviating traffic congestion, saving energy, and mitigating air 
pollution (Ferguson, 1997; Chan and Shaheen, 2012; Chen et al., 2018)4. 

To examine the performance of the proposed BSTF model and understand the conditional probabilistic relationship between 
ridesharing choice and the key predictor variables (i.e., manifest variables) through a hierarchical LC structure, we undertake a real- 
world case study in this section. In Section 4.1, we introduce the dataset used in this case study. The performance of the BSTF model in 
terms of classification accuracy is shown in Section 4.2, in which we also compare different state-of-the-art machine learning ap-
proaches (e.g., NN and RF). The identified key manifest variables, the LC variables, and the conditional probabilistic relationship are 
discussed in Section 4.3. 

4.1. Ridesharing and land-use data 

The dataset used in this case study is fused based on DiDi order data and land use GIS data of Hangzhou, China. Didi Chuxing has 
been operating dynamic ridesharing programs in many cities in China, such as Beijing, Chengdu, and Hangzhou, for a few years. DiDi 
Hitch and DiDi Express Carpool were launched in July 2015 and November 2015, respectively; the former is dynamic ridesharing 
between a driver and a passenger with similar routes, while the latter is ridesharing between two passengers provided by a dedicated 
driver. Detailed information of individual ride orders is recorded during operations, including order ID, driver ID, passenger ID, 
passenger order time, service type (i.e., ridesharing, non-sharing or taxi), location (latitude and longitude) of the origin and desti-
nation, pickup and drop-off time, trip distance, car level, etc. The order data used in this case study, which includes 251,344 records in 
total, were randomly sampled at a rate of 20% from all the completed order data between September 7 and 13, 2015, in Hangzhou, 
China. Since DiDi Express Carpool was launched after collecting this dataset, in this case study, ridesharing refers to DiDi Hitch, and 
non-sharing refers to DiDi Express. The land-use data were provided by Hangzhou Transportation Research Center, Hangzhou, China, 
which records traffic analysis zone (TAZ) based socio-economic data, including population, number of houses, number of business of 
public units, number of bus and subway stations, areas of various land-use types (e.g., residential, business, education, industry, and 
hospital), multiple types of points of interest (POIs), etc. We fuse the order data and land use data by adding TAZ based socio-economic 
variables into individual orders. Namely, based on the location information in each order, we identify the TAZ IDs of the origin and 
destination and fuse the corresponding socio-economic variables. After cleaning order data with missing and/or extreme values, we 
finally obtain 212,310 samples for the pattern analysis of dynamic ridesharing. 

The variables of the fused dataset are shown in Table 1, in which continuous variables are discretized into category variables. We 
present pie charts for all the variables in Fig. 4. It is noted that the majority of the orders are non-sharing (DiDi Express), while 
ridesharing and taxi only take up 8% and 14%, respectively. Most socio-economic (i.e., land-use) variables show closed distribution 
patterns at the origin and the destination except for variables “O_bus” and “D_bus”. Note that some of the trip features (e.g., order 
waiting time and in-vehicle time) are known after the trip. Incorporating these variables in the model is beneficial for TNCs to better 
understand the performance of ridesharing programs in both the demand and supply sides (Chen et al., 2017). Based on the proba-
bilistic relationship between the dependent variable and the post-trip features, the TNC can design operational strategies to address the 
demand–supply imbalance and improve the service quality of different service options. For instance, the TNC may display an estimated 

2 It is reported that Uber has developed its business to 24 countries and served over five billion trips since its birth (Uber’s official website. https:// 
www.uber.com/newsroom/5billion-2/); DiDi is serving over 25 million trips every day which covers over 400 cities in China (China Daily. http:// 
global.chinadaily.com.cn/a/201801/09/WS5a541c98a31008cf16da5e76.html).  

3 It is reported that Lyft aimed to have 50 percent of rides being shared by 2022 (Schaller, 2018).  
4 Ridesharing has a long history tracing back to the Second World War when the U.S. government established the Car-Sharing Club for fuel 

conservation. Traditional ride-sharing generally involves commonly commuters who plan to share a ride with others; the riders are willing to share 
travel costs such as gasoline consumption. 
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waiting time or in-vehicle time to passengers through the smartphone app to encourage them to opt for ridesharing or other social 
preferable options (Li et al., 2018). The data contains multiple trip records from one driver or passenger such that the analysis may be 
biased from the individual perspective. Due to privacy-preserving issues, we anonymize the personally identifiable information of 
drivers and passengers5. The individual-level behavioral analysis is not suitable due to the aforementioned biased sample issue and the 
lack of personal demographic attributes. With land-use attributes of each trip, this paper focuses on the aggregate-level classification 
and mobility pattern analysis of the three ride-sourcing service options provided on a ride-sourcing platform. There are some other 
limitations of the fused dataset. For instance, there is no estimated pre-trip travel information about service types that a traveler did not 
choose; the order type can be affected by DiDi’s dispatching algorithm and priority, the analysis results may be different given data 
from other TNCs6; and the missing of pricing information makes it hard to analyze the sensitivity of the trip fare to service type choice. 

4.2. Results on classification accuracy 

We train the proposed BSTF model based on the fused dataset with variable “type” as the dependent variable (service type choice) 
and the other variables as manifest variables. In addition to the proposed BSTF model, we also train other machine learning models in 
the literature for comparison. All the models are briefly introduced below:  

• BSTF: the Bayesian supervised learning tensor factorization model presented in Section 3.  
• DT: conditional inference DT model, an implementation of conditional inference trees that embed tree-structured regression 

models into a well-defined theory of conditional inference procedures (Zeileis et al., 2008). It dominates structured datasets on 
classification and regression predictive modeling problems. 

• NB: naïve Bayesian model, a simple probabilistic classifier that applies Bayes conditional probability theory with strong inde-
pendence assumptions among variables. 

Table 1 
Variables considered in the case study.  

variable name Variable meaning Category code 

type Order service type 0: taxi; 1: non-sharing; 2: ridesharing 
create_DoW Order creating day of week 0: Mon; 1: Tue, Wed, Thu; 2: Fri; 3: Sat, Sun 
create_time Order creating time 0: 0 to 5o’clock, and 19 to 23o’clock 

1: 6 to 8o’clock, and 16 to 18o’clock 
2: 9 to 15o’clock 

waiting_time Order waiting time (matching time plus pickup time) 0: smaller or equal to 3 min; 1: 3 to 5 min; 2: 5 to 7 min; 3: 7 to 10 min; 
4: 10 to 15 min; 5: over 15 min 

vehicle_time In-vehicle travel time 0: smaller or equal to 5 min; 1: 5 to 10 min; 2: 10 to 15 min; 3: 15 to 20 
min; 
4: 20 to 30 min; 5: over 30 min 

distance Actual recorded travel distance 0: smaller or equal to 3 km; 1: 3 to 6 km; 
2: 6 to 10 km; 3: 10 to 20 km; 4 over 20 km 

O_house (D_house) Number of houses in the origin (destination) zone 0: smaller or equal to 200; 1: 200 to 600; 
2: 600 to 1100; 3: 1100 to 1600; 4: 1600 to 2400; 
5: over 2400 

O_bus 
(D_bus) 

Number of bus stops in the origin (destination) zone 0: smaller or equal to 20; 1: 20 to 50; 
2: 50 to 70; 3: 70 to 120; 4: over 120 

O_metro (D_metro) Number of metro stations in the origin (destination) 
zone 

0: none; 1: 1 or 2; 2: 3 or more 

O_beauty (D_beauty) Number of beauty shops in the origin (destination) 
zone 

0: smaller or equal to 10; 1: 10 to 50; 
2: 50 to 100; 3: 100 to 200; 4: over 200 

O_restaurant 
(D_restaurant) 

Number of restaurants in the origin (destination) zone 0: smaller or equal to 50; 1: 50 to 200; 
2: 200 to 400; 3: 400 to 700; 4: over 700 

O_education 
(D_education) 

Number of schools in the origin (destination) zone 0: smaller or equal to 3; 1: 3 to 10; 
2: 10 to 20; 3: 20 to 40; 4: over 40 

O_enterprise 
(D_enterprise) 

Number of enterprises in the origin (destination) zone 0: smaller or equal to 200; 1: 200 to 400; 
2: 400 to 900; 3: 900 to 1500; 4: over 1500 

O_hospital (D_hospital) Number of hospitals in the origin (destination) zone 0: smaller or equal to 10; 1: 10 to 30; 
2: 30 to 70; 3: 70 to 120; 4: over 120 

O_shop 
(D_shop) 

Number of shops in the origin (destination) zone 0: smaller or equal to 200; 1: 200 to 400; 
2: 400 to 600; 3: 600 to 1000; 4: over 1000  

5 Among the final 212,310 cleaned samples, there are 40,292 drivers and 54,776 passengers. The average number of orders made by a driver/ 
passenger is 5.3/3.8, respectively. 29.7%/33.1% of the drivers/passengers took only 1 order, 39.4%/46.1% of them took 2 to 5 orders, 27.6%/ 
19.7% took 6 to 20 orders, and 3.3%/1.1% took over 20 orders.  

6 In the on-demand ride service market of 2015, DiDi was the only ride-sourcing platform providing the taxi dispatching service. DiDi still 
dominates the e-hailing service for taxis now. 
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• NN: the basic neural network contains at least three layers, i.e., input layer, hidden layer, and output layer. There are three hidden 
layers in this study, and the numbers of neurons are 3, 5, and 3 in each hidden layer, respectively.  

• RF: random forest model, is the model trained by bootstrapped samples of each decision tree. The number of trees is 100 in this 
paper.  

• SVM: support vector machine model, which constructs a set of hyperplanes in a domain with infinite-dimensional variables to 
classify them into categories. It can be used as a classification machine, as a regression machine, or for novelty detection. We use a 
linear kernel in this paper. 

Table 2 
Models for comparison in the case study.  

Model Algorithm Training Time (s) 

10% 20% 50% 80% 

BSTF MCMC and Gibbs sampling  18.2  33.9  99.2  151.5 
DT Zeileis et al. (2008)  1.1  2.7  9.8  21.6 
NB Dimitriadou et al. (2009)  0.3  0.8  1.9  3.2 
NN Ripley et al. (2016)  7.1  15.7  39.4  70.9 
RF Breiman (2001)  1.4  3.1  11.7  25.5 
SVM Chang and Lin (2011)  15.2  28.4  76.3  126.8  

Fig. 4. Pie charts for all the variables.  
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These models are trained and tested via existing algorithms, and the proposed BSTF model is estimated by the proposed MCMC- 
based two-stage structure learning and Gibbs sampling-based parameter learning (shown in Table 2). We train these machine 
learning models in four cases with different training sizes (i.e., 10%, 20%, 50%, and 80%). Taking the case with 10% training size as an 
instance, the dataset is randomly split as a training set with 21,231 samples (10% of 212,310) and a test set with the remaining 191,079 
samples (90% of 212,310); the training set is used for model estimation, and the test set is for the classification accuracy test. Table 2 
also presents the computational time of these models with a 6th-Gen Intel Core i5 Cup and a 6 GB RAM. Since the Bayesian estimation 
algorithm requires MCMC and Gibbs sampling, it generally takes a long time for model training. Given the complex hierarchical 
structure, it is necessary to apply the proposed algorithm to identify all the key variables. 

The classification errors for all the cases and models are shown in Table 3. For all four cases, the proposed BSTF models perform the 
lowest classification error. This result agrees with the claim that the tensor formulation of high-order interaction can maintain pre-
dictive information in the supervised learning approach (Vannieuwenhoven et al., 2012). Moreover, the superiority of the BSTF 
models becomes more significant with smaller training datasets. It is general to note that the classification accuracy for all the models 
will improve with a larger training size. The classification error of the RF model is closed to the BSTF model in all four cases, which 
means RF is also a preferable approach for high-dimensional classification. The NB, NN, and DT models are significantly sensitive to 
the training size; under the 80% training size scenario, the DT model can also provide high classification accuracy. 

To better illustrate the classification performance for ridesharing, we present the receiver operating characteristic (ROC) curve in 
Fig. 5. The ROC curve is the general measurement for the diagnostic ability of a classification model; and the higher the curve above the 
diagonal line (dashed line in Fig. 5), the more trustable the classifier is. We plot the ROC curves with “ridesharing” as a positive 
classification for the BSTF model, the DT model, and the RF model under the case of 80% training size. We select these three models 
because they are superior in overall classification accuracy compared to the other models. We note that the BSTF model provides the 
most reliable classification for ridesharing since its ROC curve is the highest. The DT model and the RF model also show good per-
formance. The areas under the curve (AUC) for the BSTF model, the DT model, and the RF model are 0.952, 0.944, and 0.923, 
respectively. We also provide detailed classification errors for different service types in Appendix A. 

4.3. Latent class analysis of ridesharing choice patterns 

The tensor formulation of high-order interaction not only provides a high classification accuracy, as shown in Section 4.2, but also 

Fig. 5. ROC curves under 80% training size.  

Table 3 
Classification error of the case study.  

Model Percentage of training set 

10% 20% 50% 80% 

BSTF  0.186  0.183  0.181  0.180 
DT  0.192  0.190  0.184  0.183 
NB  0.278  0.260  0.251  0.247 
NN  0.222  0.208  0.197  0.189 
RF  0.189  0.187  0.185  0.183 
SVM  0.196  0.196  0.192  0.192  
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offers probabilistic interpretability among the manifest variables, LC variables, and dependent variable (service type choice). In this 
section, the BSTF model in the 80% training size case is used to analyze passengers’ choice patterns. The probabilistic relationship 
among the key variables is depicted in Fig. 6. Similar to the Bayesian network (Zhu et al., 2016, 2018), an arrow from variable A to 

Table 4 
Probability table Π.  

(a) variable “distance”  

LC 0 LC 1 LC 2 

0  0.946  0.042  0.012 
1  0.110  0.863  0.026 
2  0.002  0.439  0.559 
3  0.015  0.014  0.971 
4  0.009  0.018  0.973  

(b) variable “waiting_time”  

LC 0 LC 1 LC 2 LC 3 

0  0.998  0.001  0.001  0.001 
1  0.740  0.217  0.000  0.042 
2  0.463  0.442  0.000  0.095 
3  0.267  0.355  0.270  0.108 
4  0.157  0.077  0.554  0.211 
5  0.014  0.176  0.125  0.685  

(c) variable “vehicle _time”  

LC 0 LC 1 LC 2 LC 3 

0  0.985  0.013  0.001  0.001 
1  0.007  0.982  0.002  0.009 
2  0.001  0.167  0.673  0.159 
3  0.005  0.019  0.672  0.304 
4  0.003  0.008  0.477  0.512 
5  0.004  0.002  0.147  0.848  

(d) variable “O_metro, O_shop”  

LC 0 LC 1   

0,0  0.995  0.005   
0,1  0.920  0.080   
0,2  0.867  0.133   
0,3  0.991  0.009   
0,4  0.996  0.004   
1,0  0.485  0.515   
1,1  0.646  0.354   
1,2  0.977  0.023   
1,3  0.152  0.848   
1,4  0.862  0.138   
2,0  0.237  0.763   
2,1  0.858  0.142   
2,2  0.924  0.076   
2,3  0.054  0.946   
2,4  0.968  0.032    

Fig. 6. A Bayesian Network presentation of the BSTF model.  
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variable B means that the probability distribution of B depends on A. We note that stage one of structure learning identifies five key 
manifest variables (i.e., “distance”, “waiting_time”, “vehicle_time”, “O_metro” and “O_shop”) that have a significant probabilistic 
relationship with the service type. Based on stage two of the structure learning algorithm, variables “O_metro” and “O_shop” are 
grouped and have one LC variable “O_metro, O_shop”. Variables “distance”, “O_metro”, and “O_shop” are known by passengers (also by 
the TNC) before the trips. The probabilistic relationship between these pre-trip variables and the order type can reflect passengers’ 
preferences on ride-sourcing service types given their travel needs. Variables “waiting_time” and “vehicle_time” are post-trip variables 
correlated with the service type. Since “waiting_time” consists of both matching time and pickup time, it may reflect DiDi’s order 
searching time window and searching radius; and it is not a pure post-trip variable because some passengers may make an early 
schedule that leads to an idle time window and a long pickup time. The variable “vehicle_time” is positively correlated to “distance”, 
but it also reflects congestion during the trip. As the key factors of the classification problem, the two post-trip variables are strongly 
correlated with the order type, such that each service type can have a distinctive pattern of service quality. Note that the conditional 
dependency (arrow) from an LC variable to the order type does not indicate a causal relationship. For instance, “waiting_time” is 
caused by the order type, not vice versa. 

As mentioned in Section 3, the probabilistic relationship is presented by the probability tables between the LC variables and their 
manifest variables (Π) and the probability tables between the dependent variable “type” and the LC variables (Λ). We summarize 
probability table Π in Table 4, which is estimated based on Eq. (26) after parameter learning. The decimal numbers in Table 4 denote 
πj

z
(
xj
)

with xj to be the manifest category (row index) and zj to be the LC (column index). Variable “distance” is found to have three LCs. 
Since the index of the category for variable “distance” increases with respect to travel distance (Table 1), we may explain LC 0 as a short 
distance, LC 1 as a medium distance, and LC 2 as a long distance. Similar to manifest variable “distance”, LC 0, 1, 2, and 3 for manifest 
variable “waiting_time” can be interpreted as short wait, medium wait, long wait, and extremely long wait, respectively; and LC 0, 1, 2, 
and 3 for manifest variable “vehicle_time” can be interpreted as short ride, medium ride, long ride, and extremely long ride, 
respectively. Two LCs are found for the grouped manifest variable “O_metro, O_shop”. It is found that for origins without a metro 
station, the probability of LC 1 is very low. However, with only the manifest variables, the meaning of LCs 0 and 1 is not clear; and 
further examination is provided later in this section. 

To interpret the probabilistic relationship between each LC variable and the dependent variable, we illustrate the marginal 
probability P

(
y|Zj = z

)
, which is calculated as flows: 

P
(
y|Zj = zj

)
=

∑

Zj=zj

λz1 ,...,zp (y) (29) 

Here the values of λz1 ,...,zp (y) are obtained via Eq. (25). Based on the marginal probabilities shown in Table 5, the classification 

Table 5 
Marginal probability P

(
y|Zj = zj

)
.  

Manifest Variable LC y = 0  y = 1  y = 2  

distance 0  0.344  0.537  0.119 
1  0.351  0.488  0.161 
2  0.374  0.419  0.207 

waiting_time 0  0.607  0.389  0.003 
1  0.334  0.587  0.079 
2  0.262  0.523  0.215 
3  0.222  0.427  0.351 

vehicle_time 0  0.618  0.241  0.140 
1  0.298  0.560  0.142 
2  0.189  0.671  0.139 
3  0.320  0.454  0.226 

O_metro, O_shop 0  0.244  0.584  0.172 
1  0.469  0.379  0.152  

Table 6 
LC Patterns for high ridesharing classification probability.  

Z1 = z1, ...,Zp = zp  λz1 ,...,zp (y)

distance waiting_time vehicle_time O_metro, O_shop y = 0  y = 1  y = 2  

2 3 1 0  0.067  0.168  0.765 
2 2 1 0  0.292  0.019  0.689 
1 3 0 0  0.411  0.015  0.575 
2 3 3 0  0.023  0.409  0.568 
0 3 3 0  0.128  0.318  0.554 
2 3 2 0  0.055  0.409  0.536 
1 3 2 1  0.071  0.406  0.523 
2 3 3 1  0.067  0.432  0.501  
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probability of ridesharing is found to monotonically increase with respect to the LCs for variables “distance” and “waiting_time”. A 
longer trip distance makes passengers inclined to ridesharing, probably due to the larger monetary saving. The positive relationship 
between the LC of “waiting_time” and the probability of ridesharing may be because there is a shortage of ridesharing (i.e., DiDi Hitch) 
drivers, or many ridesharing passengers used DiDi Hitch to schedule their trips in advance (Chen et al., 2017). As the LC of “distance” 
varies from 0 to 2, the classification probability of non-sharing (i.e., DiDi Express) decreases significantly, but it may not affect the 
probability of taking a taxi. This means taxi passengers are not sensitive to trip distance. We also note that the probability of taking a 
taxi monotonically decreases with the LC of “waiting_time”, such that taxis are faster than DiDi’s ride-sourcing services in picking up 
passengers. Unlikely, the LC for “vehicle_time” does not have a notable monotonic relationship with the probabilities of all the three 
service types. When the LC for “vehicle_time” is 0, the classification chance of taxi is 61.8%. For service types taxi and non-sharing, the 
monotonic patterns of their marginal probabilities with respect to LC variables “distance” and “vehicle_time” are not consistent. The 
results indicate that traffic congestion is significantly correlated with service types, affecting a passenger’s choice among taxi and non- 
sharing. For the grouped variable “O_metro, O_shop”, we note that LC 1 results in a 46.9% chance of a taxi service, while LC 0 reduces 
the taxi probability to 24.4%. Based on the marginal probabilities, we can regard LC 1 of variable “O_metro, O_shop” as a taxi- 
convenient class, while LC 0 as a taxi-inconvenient class. It generally makes sense because the number of cruise taxis in a TAZ is 
related to its socio-economic variables (i.e., “O_metro” and “O_shop” in this case study). 

We provide the combinations of LCs Z1 = z1, ...,Zp = zp that lead to high classification probability for ridesharing (i.e., high 
λz1 ,...,zp (2)) in Table 6 to better understand passengers’ choice patterns of dynamic ridesharing. There are notable common features 
among the illustrated combinations of LC variables that lead to a high probability of ridesharing: the LC of “distance” is long (i.e., 2), 
the LC of “waiting_time” is long or extremely long (i.e., 2 or 3), and the LC of “O_metro, O_shop” is “taxi-inconvenient” (i.e., 0). The 
general pattern is representative in real-world cases when ridesharing is usually used. That is, regardless of the in-vehicle travel time, 
passengers tended to use ridesharing in taxi-inconvenient areas for long-distance trips. Moreover, as discussed in the finding 
mentioned above in Table 5, many passengers scheduled ridesharing services in advance, leading to an extremely long waiting time (i. 
e., LC 3). In addition to the general LC pattern, there are also other representative LC combinations. For instance, LC combination (1, 3, 
0, 0) has a high ridesharing classification probability because passengers may schedule a medium-distance ridesharing trip in a taxi- 
inconvenient area; LC combination (0, 3, 3, 0) indicates that in a highly congested (LC 3 for “vehicle_time”) and taxi-inconvenient area, 
a trip is more likely a ridesharing order once the waiting time is extremely long. 

More interesting findings are awaiting once additional manifest variables (e.g., gender, and pricing) are available. Moreover, as 
mentioned in Section 4.1, we only know post-trip travel information in the current dataset, which is common in many big data an-
alyses, resulting in the limited predicting capability of the BSTF model and other state-of-art machine learning models. To make full use 
of the Hangzhou dataset, we present additional results in Appendix B, such that models with estimated “pre-trip” information for 
different service types and models without any post-trip/pre-trip information are tested. 

5. Conclusions 

This paper provides a high-dimensional machine learning classification model, i.e., the BSTF model, for solving classification 
problems in mobility pattern analysis. The BSTF model integrates supervised learning and probabilistic TF, which utilizes a hierar-
chical LC structure to interpret the probabilistic relationship between the predictor variables and the dependent variable (i.e., travel 
choice or other mobility measurements). The consideration of LC variables enables the BSTF model to discover hidden patterns in 
transportation classification problems. With high-dimensional datasets, the BSTF model is capable of identifying critical variables that 
are related to mobility patterns. The estimation of the BSTF model consists of a two-stage structure learning process and a parameter 
learning process. The former process identifies the significant predictor (manifest) variables and the corresponding LC structure via 
MCMC, and the latter process estimates the parameters of the conditional probability relation based on Bayesian posterior inference. 

A real-world case study on dynamic ridesharing analysis with Hangzhou DiDi ride-sourcing data and land use data is conducted in 
this paper. Cases with different training sizes are utilized to examine the classification accuracy of the BSTF model and some other 
state-of-the-art machine learning approaches. The BSTF model is found superior in classification accuracy. Even with small training 
datasets, the BSTF model can capture important features for highly accurate classification. Also, the interpretability ability of the BSTF 
model is witnessed by the identification of crucial predictor variables (i.e., travel distance, waiting time, in-vehicle time, and the 
accessibility of metro and shops of the origin) and the corresponding LC structure in passengers’ choice patterns on different ride- 
sourcing service types. 

One of the major limitations is that this paper only considers categorical variables. Therefore, one future research direction can be 
the adaption for mixed variables or continuous variables. The BSTF approach can also be implemented in unsupervised learning 
research such as population synthesis, activity synthesis, etc.; and other supervised learning research like traffic prediction. The 
scalability of this model for more complex problems can also be an interesting research direction. For instance, one may extend the 
current static BSTF model to a dynamic model. Moreover, the dataset in this study does not include pricing information and individual- 
level demographic variables. With more comprehensive datasets, the model is expected to provide more behavioral insights into 
transportation research. 
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Appendix A. . Classification results by the service type 

In this appendix, we illustrate the detailed classification percentages of different models under the 80% training size scenario in 
Section 4.2. In Table A.1, the numbers in the cells represent the average classification rate (i.e., percentage) over the 42,462 samples 
(20% of 212,310). For instance, the number 2.16 in Table A.1(a) means that 2.16% of the classifications correctly predict service type 
0; while the number 11.08 means that 11.08% of the classifications predict the type to be 1, but the actual type is 0. 

Based on Table A.1, we compute the precision and recall of different service types in Table A.2. The precision (also referred to as the 

Table A1 
Detailed classification percentages for different service types.  

(a) The BSTF model 

Percentage Predicted Type 

0 1 2 

Actual Type 0  2.16  11.08  0.38 
1  0.67  75.61  2.11 
2  0.10  3.66  4.27  

(b) The DT model 

Percentage Predicted Type 

0 1 2 

Actual Type 0 2.22 11.01  0.38 
1 1.07 75.06  2.25 
2 0.09 3.53  4.41  

(c) The BN model 

Percentage Predicted Type 

0 1 2 

Actual Type 0 3.33 9.64  0.65 
1 5.55 66.75  6.09 
2 0.09 2.72  5.21  

(d) The NN model 

Percentage Predicted Type 

0 1 2 

Actual Type 0 0.91 12.42  0.29 
1 0.41 75.87  2.10 
2 0.00 3.70  4.32  

(e) The RF model 

Percentage Predicted Type 

0 1 2 

Actual Type 0 2.53 10.74  0.34 
1 1.31 74.98  2.10 
2 0.09 3.77  4.17  

(f) The SVR model 

Percentage Predicted Type 

0 1 2 

Actual Type 0 1.02 12.15  0.44 
1 0.50 75.23  2.65 
2 0.01 3.47  4.55  
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positive predictive value) is the fraction of true positive data records among the total positive data records; and recall (also referred to 
as the sensitivity) is the fraction of true positive records among the total true records7. 

Appendix B. . Extra numerical results 

One limitation of this paper lies in the lack of important variables such as pre-trip waiting times and in-vehicle times for different 
service types, price information (the TNC may display such information to passengers in the app), and personal social-demographical 
information. Although we have demonstrated the superiority of the BSTF model in classification accuracy and probabilistic inter-
pretability, the models based on the existing dataset may not be suitable for individual behavior analysis or travel choice prediction. In 
this appendix, we develop the BSTF models and other machine learning models with two additional scenarios to fulfill the utilization of 
the Hangzhou dataset. 

In the first scenario, the service type classification model is developed based on the land-use data, order creation time, trip distance, 
estimated pre-trip waiting time, and in-vehicle time for different service types. Similar to conventional discrete choice models, we 
assume a passenger knows the pre-trip waiting time and in-vehicle time before making a decision. We assume the pre-trip in-vehicle 
times of taxi, DiDi Express and DiDi Hitch for one trip request are the same. This is because DiDi would estimate the pre-trip in-vehicle 
time of one service type based on the shortest path; without time-dependent roadway congestion information, we simply assume the 
shortest paths for the three types are identical (note that there is no detour in DiDi Hitch). Moreover, since DiDi is capable of making 
accurate travel time prediction based on advanced algorithms and real-time data (Li et al., 2018; Wang et al., 2018; Fu et al., 2020), the 
pre-trip in-vehicle times are assumed to be equal to post-trip in-vehicle times in the Hangzhou dataset. For one trip record, the pre-trip 
waiting time of the chosen service type is the same as the post-trip waiting time in the dataset; the waiting times of the other two 
unchosen types are estimated based on linear regression models. We conduct regressions based on the profile (percentile) of post-trip 
waiting times in the dataset. Fig. B.1 presents the two regression lines: the red line is obtained with xand y to be the 0.1, 0.2, …, 0.9 
percentile points of taxi and DiDi Hitch post-trip waiting times, respectively; and the blue line is estimated based on the percentile 
points of taxi and DiDi Express post-trip waiting times. The intercept of the blue line is small (i.e., 18 s), and the slope is 1.14. This 
means the waiting time of DiDi Express is around 14% longer than taxi, so there can be more taxis than DiDi Express vehicles in the 
supply pool. For the red line, the intercept is 196 s, and it indicates DiDi Hitch services are generally booked in advance, or drivers need 
some time to confirm a shared ride. All the estimated pre-trip waiting times and in-vehicle travel times are discretized based on the 
rules in Table 1. 

In the second scenario, we eliminate all the post-trip and estimated pre-trip information and only use land-use data, order creation 
time and trip distance to fit the BSTF model and other state-of-art machine learning models. We use this scenario to illustrate the 
capability of passenger choice prediction when the TNC only knows the land-use characteristics of a passenger’s origin and destination 
and the distance between them. 

The classification accuracy of different models in the two extra scenarios is shown in Table B.1. For each scenario, we note that the 
BSTF model still provides the lowest classification error among all the machine learning methods used in this paper. However, 
comparing Table B.1(a), Table B.1(b), and Table 3, we find that the BSTF model offers the highest, medium, and lowest accuracy with 
actual post-trip information, estimated pre-trip information, and no pre-trip/post-trip information, respectively. This means the 
estimation of pre-trip information is not perfectly accurate but still makes some sense. In the future research, a more comprehensive 
dataset is needed to fully explore the value of the proposed BSTF model in other applications such as travel behavior analysis, choice 
prediction, etc. 

Furthermore, as stated in footnote 5, there are 54,776 passengers and some of them could make multiple orders with similar travel 
patterns. For the individual-level travel behavior analysis, repeated trips made by the same passengers from the same origins and 
destinations around the same departure time could lead to biased results. 

To examine the impact of repeated/multiple orders, we train the BSTF models with different subsets of the DiDi Hangzhou data. 
The subsets are created by randomly excluding some repeated/multiple data records with the same combination of passenger ID, origin 
zone ID, destination zone ID, variables “create_DoW” and “create_time” (defined in Table 1); such a subset is referred to as a 
combination-based subset. We define the repeated exclusion rate (RER) as the percentage of repeated orders to be excluded. For 

Table A.2 
Precision and recalls of different service types.  

Model Type 0 Type 1 Type 2 

Precision Recall Precision Recall Precision Recall 

BSTF  73.72  15.86  83.69  96.45  63.17  53.18 
DT  65.68  16.31  83.77  95.76  62.64  54.92 
BN  37.12  24.45  84.38  85.15  43.60  64.96 
NN  68.94  6.68  82.48  96.80  64.38  53.87 
RF  64.38  18.59  83.79  95.65  63.09  51.93 
SVR  66.67  7.49  82.81  95.98  59.55  56.66  

7 Please refer to webpage https://en.wikipedia.org/wiki/Precision_and_recall for a more detailed introduction. 
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instance, with an RER of 40%, if a passenger made 5 orders that share the same origin zone, destination zone, “create_DoW” and 
“create_time” in the original dataset, we randomly pick 1 order to add into the combination-based subset, but for the rest 4 orders, each 
one has a 40% chance to be dropped and excluded for the subset; however, if a passenger only made 1 order with a specific combi-
nation, we directly add the data record into the combination-based subset. We randomly divide a combination-based subset into a 
training set with 80% data and a test with 20% data and estimate the BSTF model. The results are given in Table B.2, in which we try 
different RERs of repeated records from 0 (i.e., the original dataset) to 100% (i.e., one order per combination). First, we note that even 
after excluding 100% of such repeated orders, there are still 171,226 data records with a unique combination. This indicates that there 
are not many repeated orders with respect to the combination of passenger, origin, destination, and departure time in the original 
dataset. Second, we find that as more repeated/multiple data records are excluded, the classification error nearly stays unchanged. 
This is probably because the size of the subset does not change significantly. Therefore, the aforementioned biased issue can be 
negligible in this paper, given the tiny change in the classification error before and after removing the repeated orders in terms of the 
predefined combination. 

Based on the same exclusion method, we drop repeated orders made by the same passengers and use the passenger-based subsets to 
train the BSTF models. The measurements of different subsets/models are illustrated in Table B.3. Without individual-level de-
mographic variables, the results indicate that repeated/multiple data records from the same passengers are still helpful to the 

Table B.1 
Classification error of extra case studies.  

(a) With estimated pre-trip information 

Model Percentage of Training Set 

10% 20% 50% 80% 

BSTF  0.211  0.208  0.205  0.203 
DT  0.215  0.211  0.207  0.206 
NB  0.275  0.267  0.262  0.262 
NN  0.218  0.211  0.208  0.205 
RF  0.219  0.214  0.211  0.209 
SVM  0.214  0.212  0.212  0.212  

(b) Without post-trip or pre-trip information 

Model Percentage of Training Set 

10% 20% 50% 80% 

BSTF  0.213  0.212  0.212  0.211 
DT  0.217  0.215  0.213  0.213 
NB  0.257  0.241  0.232  0.231 
NN  0.216  0.214  0.214  0.212 
RF  0.225  0.218  0.215  0.214 
SVM  0.215  0.213  0.213  0.213  

Fig. B1. Linear regression of waiting times.  
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ridesharing pattern analysis in this paper. Since this study is mainly about aggregate ridesharing pattern analysis, including these 
repeated/multiple trips could help identify principal patterns and key latent classes. 

Appendix C. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.trc.2020.102916. 
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