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A B S T R A C T   

Accurate forecasting of passenger flow (i.e., ridership) is critical to the operation of urban metro 
systems. Previous studies mainly model passenger flow as time series by aggregating individual 
trips and then perform forecasting based on the values in the past several steps. However, this 
approach essentially overlooks the fact that passenger flow consists of trips from each individual 
traveler. For example, a traveler’s work trip in the morning can help predict his/her home trip in 
the evening, while this causal structure cannot be explicitly encoded in standard time series 
models. In this paper, we propose a new forecasting framework for boarding flow by incorpo-
rating the generative mechanism into standard time series models and leveraging the strong 
regularity rooted in travel behavior. In doing so, we introduce returning flow from previous 
alighting trips as a new covariate, which captures the causal structure and long-range de-
pendencies in passenger flow data based on travel behavior. We develop the return probability 
parallelogram (RPP) to summarize the causal relationships and estimate the return flow. The 
proposed framework is evaluated using real-world passenger flow data, and the results confirm 
that the returning flow—a single covariate—can substantially and consistently improve various 
forecasting tasks, including one-step ahead forecasting, multi-step ahead forecasting, and fore-
casting under special events. And the proposed method is more effective for business-type stations 
with most passengers come and return within the same day. This study can be extended to other 
modes of transport, and it also sheds new light on general demand time series forecasting 
problems, in which causal structure and long-range dependencies are generated by the user 
behavior.   

1. Introduction 

Recent years have witnessed the rapid development of metro systems and the continued growth of metro ridership worldwide 
(UITP, 2018). As an efficient and high-capacity transportation mode, the metro is playing an ever-important role in shaping future 
sustainable transportation. Given the growing importance of metro systems, it is critical to have a good understanding of passenger 
demand patterns to support service operation. A key task is to make accurate and real-time forecasting of passenger demand/ridership, 
which plays a vital role in a wide range of applications, including service scheduling, crowd management, and disruption response, to 
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name but a few. 
Short-term passenger flow forecasting typically focuses on forecasting the passenger flow in the next few minutes to several hours, 

and has been extensively studied in public transportation research. Most existing studies formulate passenger flow data as time series 
and follow similar methods as those applied in traffic flow forecasting. For example, statistical time series models have been widely 
applied to ridership forecasting problems, including auto-regressive integrated moving average (ARIMA) (Williams and Hoel, 2003; 
Ding et al., 2017; Chen et al., 2020a), exponential smoothing (Tan et al., 2009), and state-space/Kalman filter (Stathopoulos and 
Karlaftis, 2003; Jiao et al., 2016). Most of these classical time series models are linear by nature; to better characterize the non-linearity 
in time series data, non-linear versions or ensemble extensions of these models have also been studied (e.g., Jiao et al., 2016; Carrese 
et al., 2017). Recent research starts regarding the forecasting a supervised machine learning problem. On this track, some repre-
sentative supervised learning models have been applied, such as support vector machine (SVM) (Chen et al., 2011; Sun et al., 2015), 
artificial neural network (ANN) (Vlahogianni et al., 2005; Tsai et al., 2009; Li et al., 2017), random forest (Toqué et al., 2017), and 
recurrent neural network (RNN)/long short-term memory (LSTM) as emerging deep learning approaches (Hao et al., 2019; Liu et al., 
2019). The aforementioned research mainly focuses on modeling a univariate time series for a single metro station. However, the 
metro system is a network in which stations exhibit strong spatial and temporal correlations/dependencies. To extend the univariate 
analysis to network-wide passenger flow forecasting, some state-of-the-art models have been proposed to better characterize the 
complex spatiotemporal patterns and dynamics. For example, Gong et al. (2020) proposed matrix factorization models to estimate 
passenger flow data for each origin–destination (OD) pair; Li et al. (2019) introduced local smoothness prior based on auxiliary in-
formation (e.g., flow correlation, network typology, and POI composition) into tensor completion models to forecast passenger flow; 
Chen et al. (2020b) developed graph convolutional network (GCN) models to capture the complex spatiotemporal dependencies in a 
metro network. These new machine learning-based models have shown superior performance over traditional time series models, and 
they are more effective in capturing the complex patterns by incorporating domain knowledge and external features such as weather, 
event, time of day, and day of week. 

In all the studies mentioned above, passenger flow data is generally modeled as an aggregated count time series obtained by 
counting the number of unique card IDs in smart card transactions. Despite the simplicity and effectiveness of these models, we would 
argue that the most important characteristic of passenger flow is overlooked due to the aggregation: passenger flow consists of the 
movement of individuals with strong regularity rooted in their travel behavior. For instance, if a passenger alights at a metro station for 
work in the morning, he/she will probably depart at the same station when he/she goes home in the evening. If he/she does not travel 
in the morning, it becomes less likely we will observe a corresponding return trip. This example clearly shows that past trips should be 
utilized to predict future demand, and individual travel behavior actually can result in causal structure and long-range dependencies in 
passenger flow time series data. Some recent studies have shown that travel behavior plays a substantial role in dynamic traffic 
assignment (Cantelmo and Viti, 2019) and online demand estimation (Cantelmo et al., 2020). This effect is particularly true for metro 
systems where passengers’ travel patterns are highly regular (Sun et al., 2013; Goulet-Langlois et al., 2017; Zhao et al., 2018b). 
Therefore, when developing a passenger flow forecasting model, it is essential to integrate this type of behavior-driven and long-range 
dependencies in addition to the local input (e.g., the past n steps in the time series). 

The goal of this study is to explore the potential of incorporating an additional travel behavior component into the forecasting of 
passenger flow time series. Specifically, we propose a new scheme to forecast boarding/incoming passenger demand at a station by 
integrating historical alighting time series at the same station. We define returning passengers as those who finish their first trip at 
station s and also start their second trip at the same station. In other words, returning passengers refer to the individuals who stay at 
station s to perform an activity (e.g., home and work). In general, these return trips are not random and often exhibit strong regularity 
due to the activities performed. This motivates us to forecast the incoming/boarding demand from these “returning passengers” using 
the information on their previous trips. To achieve this, we introduce a new concept of return probability parallelogram (RPP) to better 
estimate returning flow, and we find that the estimated returning flow highly correlates with the overall boarding demand in a real- 
world data set. To further quantify the benefits of incorporating this returning flow measure, we evaluate the proposed models for one- 
step ahead forecasting, multi-step ahead forecasting, and forecasting under special events. Our results show that incorporating 
returning flow as an additional variable will consistently improve the accuracy of forecasting. 

The idea of leveraging trip-level information has been introduced and examined in some recent studies, which predict the alighting 
flow of a station using the recent boarding flow from other related stations (see e.g., Li et al., 2017; Hao et al., 2019; Liu et al., 2019). 
However, the large number of boarding-alighting station pairs makes it difficult to learn an informative model at a trip level, and 
eventually these studies develop deep neural networks to learn the correlation from the aggregated count data in a purely data-driven 
approach. Our model, instead, uses the alighting of “this trip” to predict the boarding of the “next trip”, where the alighting and the 
boarding stations are usually the same (Barry et al., 2002; Trépanier et al., 2007). We examine this idea on a boarding flow forecasting 
application, which is more important to service operation and planning. The “returning flow” proposed in this paper is solely based on 
the intrinsic travel regularity of travelers and it does not require external information/knowledge. Our work is closely related to Zhao 
et al. (2018b), which proposes a probabilistic model to predict the next trip for an individual based on his/her trip history. However, 
instead of predicting individual trips, our primary goal is to forecast the overall passenger flow to support the decision making in 
service operation. In doing so, we estimate the returning flow in an aggregated approach; therefore, the framework does not require 
individual-based data sets that are confidential and sensitive for privacy reasons. The main contribution of this work is summarized as 
follows. 
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• We define returning flow to characterize the causal structure and long-range dependencies in passenger flow data, which are 
essentially overlooked in previous time series-based studies.  

• We integrate returning flow as an additional covariate into standard time series models, and the proposed behavior-integrated 
model shows consistently improved performance in our case studies based on a real-world data set.  

• Our model also provides a new approach to forecast passenger flows under special events. 

To the best of our knowledge, this is the first research that incorporates a travel behavior component into the longstanding pas-
senger flow forecasting problem. The remainder of the paper is organized as follows. Section 2 introduces the concept of returning flow 
and return probability parallelogram as the tool to integrate travel behavior regularity into the passenger flow forecasting framework. 
In Section 3, we develop case studies based on real-world smart card data and demonstrate the effectiveness of the proposed models in 
different scenarios. Finally, Section 4 concludes our research and discusses future work. 

2. Methodology 

In this section, we introduce returning flow and the return probability parallelogram as two fundamental building blocks in the 
behavior-based boarding flow forecasting framework. The proposed forecasting models are constructed by integrating returning flow 
as a new feature/covariate into traditional time series forecasting models. We start with a brief description of the passenger flow 
forecasting problem. 

2.1. Problem description 

Suppose that in a metro system we have access to all smart card transactions, i.e., we know the anonymous ID of passengers, the 
time and the locations/stations of both boarding (tapping-in) and alighting (tapping-out) for each trip. In this case, a station s will 
generate two passenger flow time series: the alighting/arriving flow for passengers with station s as their destination, and the 
boarding/incoming flow for passengers who start their trips from station s. We denote by ys

t and ms
t the boarding flow and the alighting 

flow at station s in time interval t, respectively. 
We focus on the case of forecasting the boarding flow ys

t . Given some recent observations ys
1,…,ys

t− 1,ys
t , our goal is to predict the 

values of ys
t+1, ys

t+2,…, ys
t+L in the next L time steps/intervals. This is a standard time series analysis problem on which traditional 

statistical models such as ARIMA can be applied. In this paper, we aim to achieve better forecasting results over the traditional models 
by integrating additional information of the behavioral regularity of passengers associated with alighting flow ms

t . 

2.2. Returning flow 

We begin our model by introducing the concept of the “returning flow”. To facilitate model development, we divide all the pas-
sengers associated with stations s (both boarding and alighting) into two groups (see Fig. 1):  

(G1) Passengers who alight at station s;  
(G2) Passengers who board at station s without a previous trip alighting at s. 

Fig. 1. Illustration of two passenger groups (G1/2) and the boarding demand forecasting problem at station s.  
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With this definition, we can model the total boarding flow ys
t by combining the boarding flow in the two groups. The passengers in 

G1 can be further separated into two subgroups given if they have their next trip originating from station s within a certain time 
window. We define the subgroup with a following trip as G1A and the other as G1B. Thus, G1A actually consists of those passengers 
who conduct certain activities (e.g., home/work) around station s. We define “returning flow” at time t as the number of people in G1 
who will finish their activities and start their return trips at time t by station s, denoted by rs

t . In fact, these chained trips (with departing 
station identical to the alighting station of a previous trip) make up a substantial proportion of all trips. As shown in Fig. 2, for the 
Guangzhou metro in our case study, the returning flow accounts for over 50% of all boarding demand. We thus hypothesize that having 
the “returning flow” as an additional variable will enhance the forecasting of ys

t+1. We refer to the forecasting model with rs
t+1 as a 

covariate as M2: 

M2 : ŷs
t+1 = f

(
ys

1:t, rs
t+1

)
. (1)  

It should be noted that we do not have access to rs
t+1 (i.e., those dashed arrows in Fig. 1), as the returning flow in G1 is only observed up 

to time t (i.e., those solid arrows in Fig. 1). Therefore, in practice, we need to first estimate ̂rs
t+1 and then use it as a proxy for rs

t+1 in M2. 
On the other hand, a possible alternative is to use rs

t—which we have access in real-time—instead of ̂rs
t+1 as the covariate. We define 

this alternative model as M1 and use it as a baseline model: 

M1 : ŷs
t+1 = f

(
ys

1:t, rs
t

)
. (2)  

We also consider a standard time series model without any additional variables as a baseline (M0): 

M0 : ŷs
t+1 = f

(
ys

1:t

)
. (3)  

Note the returning flow (G1A) in this paper does not cover the G2 part of the boarding flow (Fig. 2). Because it is hard to forecast the 
one-way tickets or standalone trips in G2 by data solely from a metro system. However, a metro ride can be one trip in an activity chain 
or even one mode in a multi-modal trip; it is possible to infer the G2 part if we have complete trip chain information supported by other 
data sources, which will be greatly helpful for the boarding flow forecasting. Like in most cases, we have no complete trip/activity 
chain information. We thus establish the returning flow concept upon consecutive metro trips with the first destination and the next 
origin overlapped. This is a specific subset of activity chains. Luckily, we can obtain a very accurate estimation for the future returning 
flow (G1A) and it already takes a substantial part of the total boarding flow; using the returning flow as a covariate is still beneficial for 
the boarding flow forecasting. 

2.3. Return probability parallelogram (RPP) 

In this subsection, we propose a method to estimate the returning flow. We only consider the returning flow within a time window 
H when we define G1A. For the current and past returning flow, rs

t can be readily obtained by 

rs
t =

∑t− 1

ta=t− H
rta ,t, (4)  

where rta ,t is the number of passengers that come (alight) at station s at ta and return (board) at t. Using Eq. (4), rs
t can be obtained in 

real-time and used in M1. 
However, M2 requires a returning flow in the future that cannot be accessed by Eq. (4). Therefore, we propose a method to estimate 

r̂s
t+1 based on the returning flow generalization mechanism. Our fundamental assumption is that there exists a universal distribution 

ps( τboarding|τalighting
)

characterizing the conditional probability that a passenger in G1 who alights at time τalighting will start his/her 
returning trip at time τboarding. Note that we define ps on the whole group G1, so the subgroup G1B is also modeled in this distribution. 
For the passengers who alight at time ta we have: 

Fig. 2. The composition of the boarding flow in Guangzhou metro. Based on the smart card data from July 21 to 28, 2017.  
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Fig. 4. The return probability parallelogram (RPP), the alighting flow ms
t , and the returning flow rs

t for two representative stations: (a) A typical 
station in commercial areas. (b) A typical station in residential areas. 

Fig. 3. The density histogram of the return time interval (τboarding − τalighting) of two example stations.  
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∑ta+H

t=ta+1
ps( τboarding = t|τalighting = ta

)
+ ps( τboarding = NA|τalighting = ta

)
= 1, (5)  

in which the term ps( τboarding = NA|τalighting = ta
)

represents the conditional probability of an arriving passenger does not return within 
the time window H (i.e., subgroup G1B). 

If the conditional distribution ps( τboarding|τalighting
)

is available for all τalighting, we can estimate the expectation of the returning flow 
rs
t+1 at time t+1 by: 

r̂ s
t+1 =

∑H

h=1
ms

t− h+1ps( τboarding = t + 1|τalighting = t − h + 1
)
. (6)  

It is important to note that the estimation of ̂rs
t+1 using Eq. (6) is very different from predicting ̂rs

t+1 using a time series model based on 
past observations. This is because a simple time series model such as ARIMA cannot characterize the unique generative mechanisms (e. 
g., come-and-return) and the corresponding long-range dependencies/causal structure provided by these mechanisms in the passenger 
flow data. 

The time window length H is an additional parameter to be determined before applying Eq. (6). To choose an appropriate H, we 
quantify the inter-trip time/duration 

(
τboarding − τalighting

)
for all those passengers with both the alighting trip and the next boarding trip 

at the same station. We conduct this analysis on the Guangzhou metro data set. Fig. 3 shows the distribution of the inter-trip time of 
two representative stations in a commercial area and a residential area, respectively. The distribution is obtained by aggregating all 
alighting records on a typical Monday, and we track the returning flow within 48 h after the alighting. The return time intervals in both 
stations are characterized by a bi-modal pattern. The first peak (less than 3 h) corresponds to certain short-duration activities (e.g. 
dining and shopping). The longer peaks largely correspond to “work” activities (9–12 h) in the commercial area and “home” activities 
(10–16 h) in the residential area, respectively. Relatively few activities take around 6 h, and thus the return time intervals in both 
stations exhibit a “U” shape pattern. More importantly, as we can see, almost all of the return trips start within a 24-h window after 
finishing previous trips. Therefore, for simplicity, we only take the alighting flow within the past 24 h into account when estimating 
r̂s

t+1. 
Having determined H, the next step is to obtain a good estimate of the conditional probability distribution ps( τboarding|τalighting

)
. 

However, the current formulation involves a set of conditional probabilities for each value of τalighting, making it difficult to estimate. 
For simplicity, we assume that the conditional distributions are universal across different days: 

ps( τboarding = tb|τalighting = ta
)

= ps
0(futurewindow(tb)|windowofday(ta))

= ps
0(windowofday(ta) + tb − ta|windowofday(ta)),

(7)  

where we refer to the reduced distribution ps
0 as the return probability parallelogram (RPP). As the new conditional distribution ps

0 is 
defined given the time of day of ta, we can estimate it using historical trip data of passengers in group G1A (i.e., the solid arrows in 
Fig. 1). Denote rs

ta ,tb 
to be the number of passengers that come (alight) at station s at ta and return (board) at tb. For a time window w of 

day, ps
0 can be estimated by 

ps
0(w+ h|w) =

∑

windowofday(ta )=w
tb − ta=h

rs
ta ,tb

∑

windowofday(ta)=w
ms

ta
(h = 1, 2,⋯,H). (8)  

We use Fig. 4 to illustrate the idea of RPP. Panel (a) and (b) show two sets of conditional distributions for a commercial area and a 
residential area, respectively, in Guangzhou metro. The resolution for time slot is set to half an hour, and the range is from 6:00 to 
24:00 (operation time of the metro system). Note that in this parallelogram representation we concatenate the 24:00 of day k and the 
6:00 of day k+1 on the horizontal axis. There are two blank triangles in this diagram: the one on the left corresponds to the tb⩽ta, where 
the distribution is not defined; the one on the right corresponds to the conditional probability with tb > ta +H (H = 48 for 24 h), which 
is also ignored for simplicity. It should be noted that in RPP the sum of each row is less than 1, as it does not include the passengers in 
G1B (with no returning trips, i.e., τboarding = NA). With this formulation, we can replace ps( τboarding = t + 1|τalighting = t − h + 1

)
in Eq. 

(6) by the corresponding conditional probability in RPP. 
As shown in Fig. 4, it is obvious that different stations exhibit different RPP patterns. For example, for the commercial station in 

Fig. 4(a), most trips arrive (alight) in the morning and return in the evening on the same day, which essentially captures work ac-
tivities. It is very rare to see returning trips on the next day. As for the station in a residential area in Fig. 4(b), on the contrary, we can 
see that the distribution mainly characterizes home activities, where alighting flow generally peaks in the evening and the returning 
flow concentrates in the morning of the next day. The RPP representation demonstrated in Fig. 4 further suggests that the unique come- 
and-return dynamics for a station should be considered in passenger flow forecasting applications. 
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3. Experiments 

In this section, we conduct numerical experiments to evaluate the effectiveness of the proposed behavior-integrated models. We 
choose the standard SARIMA model as the core model for time series forecasting (M0). On top of this model, we create two regression 
with SARIMA error models—M1 and M2—by simply incorporating the observed rs

t and the estimated r̂ s
t+1 as additional covariates, 

respectively. We evaluate the performance of these models in three scenarios: 1) one-step ahead forecasting, 2) multi-step ahead 
forecasting, and 3) forecasting under special events. Besides, we also test using Support Vector Regression (SVR) and Multi-Layer 
Perceptron (MLP) as M0 in Appendix A and observe consistent results with the SARIMA. 

3.1. ARIMA model 

We choose seasonal ARIMA as the main baseline model—M0. ARIMA is a well-established time series forecasting model which has 
been widely used in traffic/passenger flow forecasting (Williams and Hoel, 2003; Ding et al., 2017; Chen et al., 2020a). Considering the 
strong periodicity from day to day, we apply Seasonal ARIMA (SARIMA) to model passenger flow. Here we give a brief introduction of 
the SARIMA model, and we refer readers to Hyndman and Athanasopoulos (2018) for a comprehensive review of time serise models. A 
SARIMA model is usually denoted by ARIMA(p,d,q)(P,D,Q)[m], where p,d, and q represent the order of autoregressive, differencing, 
and moving-average; P,D, and Q are the order of autoregressive, differencing, and moving-average for the seasonal part; and m is the 
number of period in each season. For a time series y1,…,yT, the ARIMA(p, d, q)(P,D,Q)[m] model (M0) takes the form 

Φ(B)(1 − Bm)
Dϕ(B)(1 − B)dyt = θ(B)Θ(B)et, (9)  

where B is the backshift notation defined by Bayt = yt− a, Φ(B) =
(
1 − Φ1Bm − ⋯ − ΦPBP×m), ϕ(B) =

(
1 − ϕ1B − ⋯ − ϕpBp), θ(B) =

(
1 + θ1B + ⋯ + θqBq), and Θ(B) =

(
1 + Θ1Bm + ⋯ + ΘQBQ×m); Φi,Θi,ϕi, and θi are ARIMA coefficients to be estimated; et is an error 

assumed to follow a white noise process (i.e., zero mean and iid). 
When incorporating the returning flow r1,…, rT, as a covariate, the forecasting model (M2) becomes 

yt = βrt + ηt,

Φ(B)(1 − Bm)
Dϕ(B)(1 − B)dηt = θ(B)Θ(B)et,

(10)  

where β is the regression coefficient, ηt is a regression error term that follows the ARIMA procedure. Note the regression coefficient and 
the ARIMA coefficients are estimated in one step, rather than estimated separately. All ARIMA models in this study are estimated using 
the forecast package for R (Hyndman et al., 2020). 

3.2. Model selection and evaluation 

We apply the same order of SARIMA to the demand time series for all the stations. The seasonal frequency is set to m = 36 (i.e., 
daily, from 6:00 to 24:00, as we use half an hour as the temporal resolution). For most stations, after a seasonal differencing, the 
Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979) indicates no further differencing is required to make the time series 
stationary, we thus set D = 1 and d = 0. We search over possible models and finally select ARIMA(2,0, 1)(1,1, 0)[36] as the baseline 
M0, which is shown to be appropriate for most stations. Indeed, we can achieve better forecasting results by designing station-specific 
models with different orders. However, as our goal is to evaluate the effect of using the returning flow as a covariate, we still select a 
universal model for all stations for simplicity. 

We use the root mean square error (RMSE) and the symmetric mean absolute percentage error (SMAPE) to evaluate model ac-
curacy: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

t=1
(ys

t − ŷs
t )

2

√
√
√
√ , (11)  

SMAPE =
2
N

∑N

t=1

|ys
t − ŷs

t |

|ys
t | + |ŷs

t |
× 100(%), (12)  

where ys
t and ŷs

t are the real boarding flow and the predicted boarding flow, respectively. In addition to RMSE and SMAPE, we also use 
the Akaike information criterion (AIC) (Akaike, 1998) to measures the trade-off between the goodness of fit and the complexity of a 
model. A smaller AIC suggests a better model. 

3.3. Data 

We use the passenger flow data retrieved from Guangzhou metro in China as a case study. The smart card data set covers 159 
stations from July 24 to September 8 in 2017. Note that the data on weekends are not included in our analysis (i.e., we concatenate 
Friday with the next Monday), as the RPP has different patterns in weekends. We divide the whole data set into three parts: 
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(D1) July 24 to August 4 (two weeks): estimate the RPP ps
0 for a station s (for M2 only);  

(D2) August 7 to August 25 (three weeks): estimate model parameters for all the three SARIMA models (training set);  
(D3) August 28 to September 8 (two weeks): evaluate model performance (test set). 

After estimating RPP from D1, we compute ̂rs
t+1 on data sets D2 and D3 following Eq. (6). Before estimating the SARIMA models, we 

first empirically examine the relationship between the time series of returning flow ̂rs
t and the time series of incoming demand ys

t . Fig. 5 
shows the demand time series ys

t and the estimated returning flow time series r̂s
t on data set D2/D3 for four representative stations. 

Station (a) and (d) are commercial areas, where the boarding flows concentrate in the afternoon and evening. Station (b) is a resi-
dential area that have an extremely high morning peak. Station (c) has high boarding flow in both the morning and afternoon peaks. 
We can see that the estimated returning flow ̂rs

t matches ys
t for all types of stations very well. Notably, the returning flow ̂rs

t makes up a 
large proportion of the total boarding demand, and it can correctly characterize the temporal dynamics in ys

t . More importantly, as 
marked by the red arrows in panels (a), (c) and (d), the returning flow can even reproduce some irregular increases/drops (i.e., 
anomalies) of the boarding flow, which are very difficult to capture using conventional time series models with ys

t alone. 

3.4. One-step ahead forecasting 

We use data set D2 to estimate model parameters and apply the model to D3 for evaluation. Table 1 shows the results of one-step 
ahead forecasting for the four stations in Fig. 5. Compared with M0, M2 consistently reduces the RMSE and SMAPE of both training and 
test sets of the four stations by incorporating ̂rt+1. Meanwhile, M2 is also superior with larger log-likelihood and lower AIC. However, 
with the observed rs

t as input, M1 performs almost the same with M0. This might be due to fact that rs
t correlates highly with ys

t (the 

Fig. 5. The boarding flow and the estimated returning flow. As marked by red arrows, the returning flow reflects the irregular increases/drops of 
the boarding flow: (a) Tiyu Xilu station, (b) Luoxi station, (c) Changshou Lu station, and (d) Huijiang station. The green curves represent demand 
time series ys

t and the orange curves correspsond to the estimated returning flow time series r̂ s
t . 

Table 1 
The one-step boarding flow forecasting of four stations.  

Station Model RMSE RMSE SMAPE SMAPE Log-likelihood AIC   
(train) (test) (train) (test)   

(a) Tiyu Xilu M0 398.09 363.06 11.89% 11.63% − 3747.19 7504.37 
M1 396.95 362.00 12.36% 12.22% − 3745.76 7503.52 
M2 372.94 319.60 10.59% 9.29% − 3713.9 7439.79 

(b) Luoxi M0 64.06 71.61 9.51% 9.93% − 2830.25 5670.49 
M1 64.06 71.61 9.51% 9.93% − 2830.25 5672.49 
M2 63.92 71.37 9.48% 9.89% − 2829.25 5670.48 

(c) Changshou Lu M0 93.78 94.34 10.36% 11.88% − 3018.66 6047.31 
M1 93.64 95.16 10.31% 11.99% − 3017.84 6047.67 
M2 90.02 92.74 9.39% 10.83% − 2998.07 6008.15 

(d) Huijiang M0 37.32 47.37 14.05% 14.27% − 2557.94 5125.88 
M1 37.29 47.29 14.05% 14.25% − 2557.61 5127.21 
M2 36.67 38.61 13.49% 13.91% − 2549.47 5110.93  
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observation at the last step), since the returning flow covers a considerable proportion of the overall boarding flow. Thus the amount of 
additional information brought by this term is rather marginal. While on the contrary, ̂rs

t+1 estimated externally by combining RPP and 
the alighting time series ms

t actually encodes the generative mechanisms and long-range dependencies, and thus M2 produces much 
better forecasting results. 

To further evaluate whether the improvement of M2 is statistically significant, we apply paired t-test to compare the absolute 
forecast errors on the test set D3. For each station, denote the forecast error of model M to be a random variable εM = ŷ − y. When 
comparing M2 and M0, the null hypothesis H0 : μ(|εM2| − |εM0|) = 0 means no significant difference between the absolute forecast 
error of M2 and M0. We use the lower-tailed alternative hypothesis Ha : μ(|εM2| − |εM0|)〈0, which means the absolute forecast error of 
M2 is smaller than M0. We also compare M2 with M1 in the same way. Based on the p-values in Table 2, we reject H0 for stations (a)(c) 
(d). Therefore, M2 indeed improves the forecast for stations (a)(c)(d). Although M2 also reduces the RMSE and SMAPE for station (b), 
Table 2 shows the improvement is not significant at the 0.05 level. 

The results in Table 1 and Table 2 indeed show that M2 gives improved accuracy; however, it should be also noted that the 
improvement varies across different stations. To further explore this variation, we cluster the 159 stations based on their RPPs. In doing 
so, we transform each RPP into a vector of 36 × 36 = 1296 and perform hierarchical clustering using the Euclidean distance between 
paired vectors; the distances between clusters are calculated by the Ward’s method (Ward, 1963). In the meanwhile, we measure the 
effect of r̂s

t+1 by the difference in SMAPE: 

Ds = SMAPEs
M2 − SMAPEs

M0, (13)  

where SMAPEs
M2 and SMAPEs

M2 are SMAPE values of M2 and M0, respectively, on the test data set D3. A negative Ds means M2 
improves the forecasting accuracy. 

The dendrogram for the hierarchical clustering is shown in Fig. 6. We cut the clustering tree at the half-height, which divides the 
159 stations into three major clusters (with one station in exception). The cluster centroids (the average RPP for the cluster) for the 
three clusters are shown in Fig. 7, where we also show the probabilities of returning on the same day and the next day. From Fig. 7, we 
can see cluster 1 corresponds to business-type areas where more passengers return on the same day, such as the Tiyu Xilu station in 
Fig. 4 (a). For cluster 2, the probability of returning on the next day is higher than returning on the same day, exhibiting the feature of 
residential areas, such as the Luoxi station in Fig. 4 (b). Cluster 3 is a combination of cluster 1 and 2, which has a relatively balanced 

Fig. 6. Top: the dendrogram for the hierarchical clustering based on RPP. Bottom: the test set SMAPE differences between M2 and M0; green and 
negative values means using r̂ s

t+1 improves the boarding flow forecast in the test set. 

Table 2 
Paired t-test p-values for absolute forecast errors.   

(a) Tiyu Xilu (b) Luoxi (c) Changshou Lu (d) Huijiang 

H0 : μ(|εM2| − |εM0|) = 0  < 0.001*  0.065 0.016*  0.003*  

Ha : μ(|εM2| − |εM0|)〈0  
H0 : μ(|εM2| − |εM1|) = 0  < 0.001*  0.061 0.013*  0.003*  

Ha : μ(|εM2| − |εM1|)〈0  

* Significant at 0.05 level. 
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returning flow in both the current and the next day. The bottom panel of Fig. 6 shows the Ds values for all stations following the same 
order as the clustering result. As can be seen, Ds values are negative for most stations, confirming the effectiveness of model M2. It 
should be noted that the effect of ̂rs

t+1 is different among clusters. The reduction of the SMAPE is the most profound for cluster 1 (with 
two exceptions, which we will discuss in detail in Section 3.6), while visually the least significant for cluster 2. We use the above paired 
t-test to check if the improvement of M2 compared with M0 is statistically significant. Using the 0.05 significance level, we find the 
improvements for 23 out of 51 stations (45.1%) in cluster 1 are significant, 1 out of 41 stations (2.4%) in cluster 2 are significant, and 9 
out of 66 stations (13.6%) in cluster 3 are significant. These results suggest the returning flow ̂rs

t+1 is more effective for the forecast of 
business-type stations. The reason could be that the duration for work/shop activities is more fixed than the home activity, so the 
return flow estimation is more accurate for business-type stations. 

3.5. Multi-step ahead forecasting 

Even with strong seasonality, multi-step ahead forecasting is a still challenging task because the errors will accumulate with the 
rolling forecasting process. A unique advantage of model M2 is that the estimation of returning flow r̂ s

t+L suffers less from this error 
accumulation problem thanks to the long-range dependencies, and even the alighting flow in many steps ago could still dominate the 
future returning flow. For example, as shown in Fig. 4 (a), the alighting flow in the morning (7:00–10:00) plays an important role in 
determining the returning flow of the evening (17:00–19:00). Therefore, using returning flow as an additional feature in M2 could 
potentially alleviate the error accumulation problem in multi-step ahead forecasting. 

For an L-step boarding flow forecasting that predicts ys
t+L by ys

1:t, M2 requires a series of returning flow r̂s
t+1,…, r̂ s

t+L as input. 

Fig. 7. The cluster centroids. (a), (b), and (c) correspond to the cluster centroids of cluster 1, 2, and 3, respectively.  
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However, in order to estimate ̂rt+L, Eq. (6) requires the alighting flow series ms
t+1:t+L− 1, which are not available. In this case, we use the 

average alighting flow at the same window of historical days as the approximation of future alighting flow ms
t+1…ms

t+L− 1. This 
approximation for the future alighting flow should only bring minor errors to the estimation of returning flow in Eq. (6), since it only 
contributes to the last L − 1 components in the summation. 

We examine the multi-step ahead forecasting using a time series cross-validation method that is known as “evaluation on a rolling 
forecasting origin” (Hyndman and Athanasopoulos, 2018, Chapter 3). For an L-step ahead forecasting, we train a model for each 
observation in data set D3 using a training set form the first observation in data set D2 to the observation L steps prior to that 
observation. The error is only evaluated at the Lth step, and the overall error is the average error over the test set. 

Table 3 shows the result of 1, 2, 4, and 6 steps forecasting for M0 and M2. Compared with M0, M2 offers substantially enhanced 
forecasting in stations (a), (c), and (d), and the errors increase much slower with the growing step L. Especially, in station (a), the RMSE 
of M0 increases 252.55 (75.6%) form 1-step forecast to 6-step forecast, the number is only 174.66 (60.4%) for M2. For the residential 
(cluster 2) station (b), the effect of M2 in multi-step ahead forecasting is less significant, which validates the different contributions of 
returning flow among different clusters. Overall, we can see that multi-step ahead forecasting tasks can benefit substantially from the 
long-range dependencies encoded in M2 and r̂ s

t+1. 
The estimation of the returning trip closely relates to the inter-trip duration. It is thus worth analyzing the effect of time reso-

lution—especially a more refined resolution—to the forecasting performance. We apply a 15-min resolution to further test the impact 
of the returning flow to the multi-step forecasting. The results are shown in Table 4, where the baseline model M0 is ARIMA(2,0,1) 
(1,1,0)[72]. We can see using the returning flow still greatly alleviates the error accumulation in multi-step forecasting, and the 
forecasting improvement is the most significant for station (a), (c), and (d), which is consistent with Table 3 and Section 3.4. 

Fig. 8. The alighting, boarding, and the estimated returning flow of Luogang station under an event (August 30).  

Table 3 
The multi-step boarding flow forecasting of four stations by time series cross-validation (30-min resolution).  

Station Model 30 min (at L = 1)  1 h (at L = 2)  2 h (at L = 4)  3 h (at L = 6)    

RMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE SMAPE 

(a) Tiyu Xilu M0 334.06 12.92% 435.16 15.30% 547.35 19.88% 586.61 19.23% 
M2 290.43 9.87% 328.90 12.60% 403.20 10.82% 465.09 11.71% 

(b) Luoxi M0 75.94 10.64% 79.53 11.70% 88.49 12.14% 90.16 12.51% 
M2 76.10 10.60% 79.43 11.65% 88.49 12.08% 89.97 12.38% 

(c) Changshou Lu M0 97.92 10.28% 126.65 14.42% 154.58 16.74% 168.33 15.89% 
M2 84.80 7.85% 103.84 8.84% 129.53 10.37% 153.12 11.58% 

(d) Huijiang M0 50.27 14.50% 54.09 15.52% 56.16 16.22% 56.30 17.33% 
M2 39.76 13.95% 41.13 14.70% 42.76 15.00% 43.52 15.69%  

Table 4 
The multi-step boarding flow forecasting of four stations by time series cross-validation (15-min resolution).  

Station Model 15 min (at L = 1)  30 min (at L = 2)  1 h (at L = 4)  1.5 h (at L = 6)    

RMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE SMAPE 

(a) Tiyu Xilu M0 169.57 11.63% 210.38 13.95% 248.59 16.02% 283.43 18.86% 
M2 163.43 10.35% 190.49 11.44% 197.12 13.38% 206.92 13.24% 

(b) Luoxi M0 41.70 12.45% 44.31 12.79% 46.53 13.61% 48.68 14.29% 
M2 41.72 12.46% 44.33 12.77% 46.48 13.58% 48.71 14.25% 

(c) Changshou Lu M0 52.20 12.29% 60.30 14.26% 72.18 17.44% 79.66 19.55% 
M2 47.79 9.52% 52.76 10.16% 60.42 10.45% 66.06 11.45% 

(d) Huijiang M0 29.22 17.36% 30.56 17.85% 31.90 18.14% 32.42 19.07% 
M2 25.55 17.21% 25.90 17.52% 26.54 17.87% 26.90 18.63%  
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3.6. Forecasting under special events 

As shown in Fig. 6, M2 is less effective only for a few stations. A main reason is that these stations in general have a large variation in 
RPP from day to day. For these station, ̂rs

t+1 will be less accurate and less informative in supporting the forecasting. Therefore, M2 with 
r̂s

t+1 estimated by a universal RPP will not benefit as much, if not more, than M0 and M1. 
This is particularly the case for forecasting under special events, since the RPP cannot be well estimated using historical data and it 

will involve large variation in nature. For example, as a metro station next to the Guangzhou International Sports Arena, Luogang often 
experiences surging demand because of large sports events and concerts. Fig. 8 shows that the come-and-return dynamics under the 
special event is very different from normal days. The event on August 30 brought a period of unusually high alighting flow. After the 
event, the returning passengers caused another peak in the boarding flow. If we adopt a universal RPP estimated by aggregating 
historical data, we will end up with erroneously distributing the returning flow to the next morning (the morning peak of ̂rs

t on August 
31). To address this problem, we propose to build two separate RPPs for normal and event-induced passengers, respectively. For the 
passengers alight at time ta, the probability of returning at t becomes the weighted sum of the two parts: 

ps( τboarding = t|τalighting = ta
)
=

ms,e
ta

ms
ta

ps,e( τboarding = t|τalighting = ta
)
+

ms,n
ta

ms
ta

ps,n( τboarding = t|τalighting = ta
)
, (14)  

where we use superscript e and n to denote variables for event and normal conditions, respectively, and thus the alighting flow is ms
ta =

ms,e
ta + ms,n

ta . When the event-induced alighting flow ms,e
ta = 0, Eq. (14) reduces to the normal RPP. 

In practice, we have a few approaches to estimate the event-induced alighting flow ms,e
ta and RPP under events, such as looking into 

the passenger flow of the specific gate to the event venue or using the time information of an event. When such information is not 
available, we propose to apply the following method to estimate the RPP under events (assuming all events in station s follow the same 

Fig. 10. The boarding and the returning flow (using Eq. (14)) of Luogang station.  

Fig. 9. The RPP for passenger flow induced by events in Luogang station. Probabilities are set to zero for time windows without event.  

Table 5 
The boarding flow forecasting under special events for Luogang stations.  

Model RMSEe RMSEe SMAPEe SMAPEe Log-likelihood AIC  
(train) (test) (train) (test)   

M0 392.64 1003.29 24.55% 46.62% − 2984.11 5978.22 
M1 408.15 1043.25 27.19% 45.34% − 2972.46 5956.92 
M2 397.14 1018.88 25.95% 46.79% − 2909.38 5830.76 
M2’ 255.46 535.63 23.16% 36.30% − 2821.29 5654.58  
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RPP). First, a period with alighting flow larger than a threshold is identified as an event period. For each time window in a day, we use 
Q3 +1.5IQR as the threshold, where Q3 is the third quartile and IQR the interquartile range. Next, the normal RPP can be estimated by 
the non-event periods. Subtracting the normal alighting (use median) and the normal returning flow from the part identified as event 
periods, the rest data in event periods are used to estimate the RPP under special events. By separating event and normal flow, we also 
prevent the normal RPP from being influenced by the event flow. 

Using the data from July 1 to August 24, 2017 (weekends included), Fig. 9 shows the event RPP of Luogang station. It is conspicuous 
that two types of events exist in this venue, one ends in the afternoon and the other ends in the evening. The returning time for each 
type of event is more concentrated than the alighting time and is mostly on the same day of the alighting time. Although the RPP is 
estimated from different events (8 days with significant events), the return probability of these events shows regular and predictive 
patterns. 

Fig. 10 shows the re-estimated returning flow of Luogang station. Compared with Fig. 8, we can find the returning flow in Fig. 10 
can now correctly reflect the peak and trend of the boarding flow under the special event. Note that the days in Fig. 10 are different 
from the days used for event RPP estimation, which shows the come-and-return dynamic of different events in this station follows 
similar patterns. 

Considering that these events are occasional, we use the non-seasonal ARIMA with the order ARIMA(2,0, 1) as our baseline model 
M0. The data separation is the same as Section 3.3, except that we use a longer period for the event RPP estimation. We denote by M2’ 
the model that uses the “adjusted” returning flow as a covariate. The forecasting results are shown in Table 5. To highlight the 

Table A.6 
The one-step boarding flow forecasting of four stations by SVR  

Station Model RMSE RMSE SMAPE SMAPE   
(train) (test) (train) (test) 

(a) Tiyu Xilu M0 288.00 337.02 11.27% 11.60% 
M1 286.54 337.75 11.59% 11.76% 
M2 280.32 306.79 11.12% 11.45% 

(b) Luoxi M0 64.61 80.66 11.30% 13.41% 
M1 65.81 78.45 11.37% 13.39% 
M2 64.86 78.34 11.47% 13.53% 

(c) Changshou Lu M0 72.80 111.81 6.00% 9.72% 
M1 72.91 109.99 6.13% 9.51% 
M2 65.71 103.83 6.06% 9.33% 

(d) Huijiang M0 31.95 45.37 13.53% 15.75% 
M1 31.98 44.46 13.61% 15.83% 
M2 31.64 42.53 13.46% 15.75%  

Table A.7 
Paired t-test p-values for SVR absolute forecast errors.   

(a) Tiyu Xilu (b) Luoxi (c) Changshou Lu (d) Huijiang 

H0 : μ(|εM2| − |εM0|) = 0  < 0.001*  0.403 < 0.001*  0.022*  

Ha : μ(|εM2| − |εM0|)〈0  

H0 : μ(|εM2| − |εM1|) = 0  < 0.001*  0.768 < 0.001*  0.011*  

Ha : μ(|εM2| − |εM1|)〈0  

* Significant at 0.05 level. 

Table A.8 
The one-step boarding flow forecasting of four stations by MLP.  

Station Model RMSE RMSE SMAPE SMAPE   
(train) (test) (train) (test) 

(a) Tiyu Xilu M0 312.23 332.87 12.08% 13.52% 
M1 309.10 333.81 11.12% 13.08% 
M2 296.60 307.57 10.68% 12.45% 

(b) Luoxi M0 59.86 74.89 9.92% 11.68% 
M1 71.42 82.27 13.57% 15.56% 
M2 72.66 80.54 14.30% 15.92% 

(c) Changshou Lu M0 74.03 108.54 7.28% 13.37% 
M1 77.38 105.13 9.19% 13.60% 
M2 65.50 95.31 7.41% 12.35% 

(d) Huijiang M0 32.50 43.08 12.62% 15.59% 
M1 34.64 43.85 14.03% 15.59% 
M2 31.39 35.86 14.02% 15.20%  
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forecasting performance under events, we only use event periods (when the boarding flow exceeds Q3 + 1.5IQR) to calculate the RMSE 
and the SMAPE, respectively denoted by RMSEe and SMAPEe. We can see M2’ with the “adjusted” returning flow has the best per-
formance under all criteria. The results further show that the returning flow offers substantial improvement even for the forecasting 
under special events. Although the simple ARIMA may not be the best model for a time series with apparent “outliers” such as these 
events, the returning flow could be easily integrated into other models (such as the generalized autoregressive conditional hetero-
skedasticity, GARCH) for a better prediction. 

4. Conclusions and discussion 

In this paper, we propose a new framework for forecasting passenger flow time series in metro systems. In contrast to some previous 
studies that capture temporal dynamics in a data-driven way, we try to incorporate the generative mechanisms rooted in travel 
behavior into modeling passenger flow time series. For that purpose, we introduce returning flow as a new covariate/feature into 
standard time series models. This returning flow is estimated as the expected returning boarding demand given previous alighting 
trips; thus, it encodes the causal structure and long-range dependencies in passenger flow data. We estimate the return probability by 
aggregating historical data, thereby working around the sensitivity issues and privacy concerns accompanying individual-based data 
and models as in Zhao et al. (2018b). We examine the proposed framework on a real-world passenger flow data set collected from 
Guangzhou metro in China. The proposed framework with the returning flow demonstrates superior performance in all three tested 
scenarios, namely one-step ahead forecasting, multi-step ahead forecasting, and forecasting in special events. And we found the 
returning flow is more useful for the boarding demand forecast of business-type stations, where most returning trips are within the 
same day. On the contrary, the model does not bring much improvement for residential stations. This result suggests that “home” 
activity duration demonstrates a higher variance than that of “work” activities. In addition, the experiments in Appendix A show the 
returning flow also improves the forecast of machine learning models like SVR and MLP. In fact, the returning flow (as a covariate) and 
the idea of regularity-based long-range dependency can be used in a diverse range of prediction models (e.g., time series model, 
machine learning models, Deep learning). 

There are several directions for future research. First, this study assumes that both the boarding and the alighting time series are 
available (i.e., both tapping-in and tapping-out are registered by the smart card system), while metro in some cities may have a 
tapping-in only system. In this case, one should integrate a destination inference model (see e.g., Barry et al., 2002; Trépanier et al., 
2007; Cheng et al., 2020) into the proposed framework. Estimating the returning probability by other data sources, such as survey, 
Bluetooth, and call detail records, is also worth exploring. Second, the come-and-return pattern and RPP of a station may change over 
time. How to detect the pattern changes (Zhao et al., 2018a) and develop time-varying models should be studied. The current constant 
RPP is a simplified assumption; further utilizing the returning flow’s auto-correlation is a possible approach to improve the returning 
flow estimation. There is still space to improve the model by advanced statistical time series and deep learning-based sequence models. 
Third, the models developed in the current framework are station-specific, while travel behavior regularity is ubiquitous and different 
stations may share similar patterns. Therefore, the RPP formulation can be generalized using parametric model, approximation, and 
dimensionality reduction techniques such as principal component analysis and matrix/tensor factorization (Sun and Axhausen, 2016) 
to extract common patterns for RPPs across different stations. This can be particularly useful when only limited data are available. 
Fourth, we should relax the assumption that the returning flow must have the same boarding station as the previous alighting station, 
because there could be multiple destinations or multiple transportation modes in one’s activity chain (Bowman and Ben-Akiva, 2001). 

Table A.9 
Paired t-test p-values for MLP absolute forecast errors.   

(a) Tiyu Xilu (b) Luoxi (c) Changshou Lu (d) Huijiang 

H0 : μ(|εM2| − |εM0|) = 0  < 0.001*  0.999  < 0.001*  0.031*  

Ha : μ(|εM2| − |εM0|)〈0  
H0 : μ(|εM2| − |εM1|) = 0  < 0.001*  0.607 0.003*  < 0.001*  

Ha : μ(|εM2| − |εM1|)〈0  

* Significant at 0.05 level. 

Table A.10 
The number of significant stations in the paired t-test between M2 and M0 (0.05 significance level).   

Cluster 1 Cluster 2 Cluster 3  
(business-type) (residential-type) (combined-type) 

Number of stations 51 41 66 
SARIMA 23 (45.1%) 1 (2.4%) 9 (13.6%) 

SVR 22 (43.1%) 4 (9.8%) 13 (19.7%) 
MLP 29 (56.8%) 4 (9.8%) 13 (19.7%)  
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It is possible to improve and extend the forecasting by multi-modal trips since the metro system is often combined with other 
transportation modes; a route/mode choice model can be integrated into the multi-modal forecasting framework. Sufficient data is a 
prerequisite for this direction. Lastly, we can extend this framework to other transport modes with non-random and chained travel 
patterns, such as private vehicles, taxis, and ride-hailing services. This paper also sheds new light on other behavior-driven demand 
forecasting problems, in which the causal structure and the long-range dependencies play a substantial role. For instance, integrating 
purchasing behavior into the demand forecasting of retail products. 
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Appendix A. Experiments in other models 

To further test if the returning flow can also improve other ridership forecast models, we use two popular machine learning 
models–Support Vector Regression (SVR) and Multi-Layer Perceptron (MLP)–to repeat the experiment in Section 3.4. We rescale data 
to [0, 1] by min–max normalization as a preprocessing, and we use the scikit-learn python package to implement these models. 

The SVR model is similar to the previous work (Tang et al., 2018) except we have no external features like the weather. The input 
features for M0 are the boarding flow at time t and t − 1, and 36 dummy variables representing the time of a day. We add rs

t to M1 and 
r̂s

t+1 to M2 as an additional feature. We tune hyper-parameters by cross-validation using M0 and select C = 0.274 and ε = 0.016; other 
hyper-parameters are the default setting of the scikit-learn package. The forecast results of the four stations by SVR are shown in 
Table A.6 and the significance tests are shown in Table A.7. 

The MLP uses the same features as the SVR. We tune hyper-parameters by cross-validation using M0 and select the hidden layer size 
to be 150 and use the identity activation function; other hyper-parameters are the default setting of the scikit-learn package. The 
forecast results of the four stations by MPL are shown in Table A.8 and the significance tests are shown in Table A.9. 

In Table A.6 and Table A.8, M2 has lower forecast RMSE and SMAPE in the test set than M0 and M1 for stations (a)(c)(d). The 
hypothesis tests in Table A.7 and Table A.9 for these stations also show that the absolute forecast error of M2 is less than M0 and M1. 
On the other hand, the effect of using the returning flow is not significant for station (b)—a residential type station. In summary, the 
returning flow can improve the boarding flow forecast of SVR and MLP, and the improvement is more significant for business-type 
stations with more passengers return on the same day (i.e., station (a)(c)(d)). These results are consistent with the SARIMA model. 

Finally, we apply SVR and MLP to all stations and use the paired t-test described in Section 3.4 to test if the improvement of M2 is 
significant compared with M0. Results are shown in Table A.10, where the clusters are the same as Fig. 6. The results of different 
models are consistent, the proposed returning flow is more effective for business-type stations. 
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