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Bayesian Temporal Factorization for
Multidimensional Time Series Prediction

Xinyu Chen and Lijun Sun∗

Abstract—Large-scale and multidimensional spatiotemporal data sets are becoming ubiquitous in many real-world applications such
as monitoring urban traffic and air quality. Making predictions on these time series has become a critical challenge due to not only the
large-scale and high-dimensional nature but also the considerable amount of missing data. In this paper, we propose a Bayesian
temporal factorization (BTF) framework for modeling multidimensional time series—in particular spatiotemporal data—in the presence
of missing values. By integrating low-rank matrix/tensor factorization and vector autoregressive (VAR) process into a single probabilistic
graphical model, this framework can characterize both global and local consistencies in large-scale time series data. The graphical
model allows us to effectively perform probabilistic predictions and produce uncertainty estimates without imputing those missing
values. We develop efficient Gibbs sampling algorithms for model inference and model updating for real-time prediction, and test the
proposed BTF framework on several real-world spatiotemporal data sets for both missing data imputation and multi-step rolling
prediction tasks. The numerical experiments demonstrate the superiority of the proposed BTF approaches over existing state-of-the-art
methods.

Index Terms—Time series prediction, missing data imputation, low rank, matrix/tensor factorization, vector autoregression (VAR),
Bayesian inference, Markov chain Monte Carlo (MCMC)

F

1 INTRODUCTION

With recent advances in sensing technologies, large-scale
and multidimensional time series data—in particular spa-
tiotemporal data—are collected on a continuous basis from
various types of sensors and applications. Making predic-
tions on these time series, such as forecasting urban traffic
states and regional air quality, serves as a foundation to
many real-world applications and benefits many scientific
fields [1], [2]. For example, predicting the demand and states
(e.g., speed, flow) of urban traffic is essential to a wide range
of applications in intelligent transportation systems (ITS),
such as trip planning, travel time estimation, route planning,
traffic signal control, to name but a few [3]. However,
given the complex spatiotemporal dependencies in these
data sets, making efficient and reliable predictions for real-
time applications has been a long-standing and fundamental
research challenge.

Despite the vast body of literature on time series analysis
from many scientific areas, three emerging issues in mod-
ern sensing technologies have posed challenges to classical
modeling frameworks. First, modern time series data are
often large-scale, collected from a large number of sub-
jects/locations/sensors simultaneously. For example, the
highway traffic Performance Measurement System (PeMS)
in California consists of more than 35,000 detectors, and it
has been recording flow and speed information every 30
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seconds since 1999 [4]. However, most classical time series
models, such as vector autoregrssive models (VAR) [5], are
not scalable to handle these large data sets. Second, modern
time series generated by advanced sensing technologies
are usually high-dimensional with different attributes. The
multidimensional property in these time series data sets
makes it very difficult to characterize the higher-order corre-
lations/dependencies together with the temporal dynamics
across different dimensions [6]. In addition to sensing data,
multidimensional time series is also ubiquitous in social
science domains such as international relations [7], dynamic
import-export networks and social networks [8]. It is also
particularly important in modeling traffic/transportation
systems with both origin and destination attributes. For
example, mobility demand/flow for different types of trav-
elers using different modes can be modeled as a third (origin
zone×destination zone×time) tensor time series and all di-
mensions have strong interactions with each other [9]. Third,
most existing time series models require complete time
series data as input, while in real-world time series data sets
the missing data problem is almost inevitable due to various
factors such as hardware/software failure, human error, and
network communication problems. Taken together, it has
become a critical challenge to perform reliable forecasting
on large-scale time series data in the presence of missing
data [10]. A simple and natural solution is to adopt a two-
stage approach: first applying imputation algorithms to fill
in those missing entries, and then performing predictions
based on the complete time series. This simple two-stage
approach has been used in a wide range of real-world
applications [11]; however, by applying imputation first,
the prediction task actually suffers from accumulated errors
resulting from the imputation algorithm.

To address these issues in modeling multivariate and

Authorized licensed use limited to: McGill University. Downloaded on July 21,2022 at 01:06:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3066551, IEEE
Transactions on Pattern Analysis and Machine Intelligence

2

multidimensional time series data, several notable ap-
proaches have been proposed recently based on ma-
trix/tensor factorization (see [1] for a brief review). As a
common technique for collaborative filtering, matrix/tensor
factorization presents a natural solution to address the scal-
ability, efficiency, and missing data issues. Essentially, these
models assume that the multivariate and multidimensional
time series can be characterized by a low-rank structure with
shared latent factors (i.e., global consistency). In order to cre-
ate meaningful temporal patterns, different smoothing tech-
niques and regularization schemes have been introduced
(e.g., linear dynamical systems [12] and Gaussian processes
[13], [14]) to encode local consistency. In a recent work, Yu et
al. [15] proposed a Temporal Regularized Matrix Factoriza-
tion (TRMF) framework to model multivariate time series
with missing data by introducing a novel AR regularizer on
the temporal factor matrix. This work is further extended
in Takeuchi et al. [16] to model spatiotemporal tensor data
by introducing a spatial autoregressive regularizer, which
provides additional predictive ability (i.e., kriging) on the
spatial dimension for unknown locations/sensors.

Overall, these factorization approaches have shown su-
perior performance in modeling real-world large-scale time
series data in the presence of missing values; however, there
are still several main drawbacks hindering the application
of these models. On the one hand, these models in general
require careful tuning of the regularization parameters to
ensure model accuracy and to avoid overfitting. The tun-
ing procedure is computationally expensive and the cost
increases exponentially with the number of parameters.
Despite its high computational cost, the tuning procedure
has to be performed for each specific study/task/data set
and there exist no universal solutions. On the other hand,
most most existing models are either not probabilistic [15]
(thus they can only provide point estimates of the time series
data) or only designed for imputation/interpolation tasks
[12], [13]. As a result, the reliability and uncertainty of the
predictions/imputations are often overlooked. However,
emerging real-world applications, such as route planning
and travel time estimation, are extremely sensitive to uncer-
tainties and risks.

In this paper, we propose a new Bayesian Temporal
Factorization (BTF) framework which can effectively handle
both the missing data problem and the large-scale/high-
dimensional properties in modern spatiotemporal data. Our
fundamental assumption is that these time series are highly
correlated with shared latent factors. Inspired by the recent
studies on temporal regularization [15] and Bayesian factor-
ization [12], this framework applies low-rank matrix/tensor
factorization to model multivariate and multidimensional
spatiotemporal data and imposes a vector autoregressive
(VAR) process to model the temporal factor matrix. The
overall contribution of this framework is threefold:

1) We integrate VAR and probabilistic matrix/tensor
factorization into a single graphical model to effi-
ciently and effectively model large-scale and mul-
tidimensional (spatiotemporal) time series. This
model can impute missing values and make pre-
diction without introducing potential bias. By intro-
ducing a proper VAR process, we can better capture

the dependencies among different temporal factors
and handle the case of extreme data corruption.

2) The framework is fully Bayesian and free from
tuning regularization parameters, and thus it gives
a flexible solution to ensure model accuracy while
avoiding overfitting. By using conjugate priors, we
can derive efficient Markov chain Monte Carlo
(MCMC) sampling algorithm for model inference.
The Bayesian framework allows us to make proba-
bilistic predictions with uncertainty estimates.

3) Extensive experiments are performed on real-world
spatiotemporal data sets to demonstrate its effec-
tiveness against recent state-of-the-art models.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review related work on modeling mul-
tivariate time series data and matrix/tensor factorization
models for large-scale and multidimensional time series
data. Section 3 provides a detailed description of the multi-
variate and multidimensional time series prediction prob-
lem in the presence of missing values. In Section 4, we
present the Bayesian Temporal Matrix Factorization (BTMF)
model for matrix time series data and develop an efficient
MCMC algorithm for model inference. Section 5 extends
BTMF to Bayesian Temporal Tensor Factorization (BTTF) to
model tensor time series data. Section 6 provides the results
on extensive numerical experiments based on several real-
world spatiotemporal data sets, followed by the conclusion
and future work in Section 7.

2 RELATED WORK

In this section, we review and summarize some related
studies on modeling multiverse time series data Y ∈ RN×T ,
where N is the number of time series and T is number of
time points. We are particularly interested in the case where
N is large and Y contains missing values, where it becomes
infeasible to apply traditional methods such as VAR (with
∼ N2 parameters). We first review a popular solution that
models the original data on a much smaller latent space with
R factors (R� N ) and then imposes smoothness/dynamics
on the temporal latent factors. Modeling multivariate time
series data in a latent space also provides a natural so-
lution to solve the missing data problem. Afterwards, we
review relevant studies on probabilistic and Bayesian ma-
trix/tensor factorization, which is also a key component of
our work.

2.1 Modeling in Latent Space with Temporal Dynamics

As mentioned, we can consider the observed data Y an
incomplete matrix, on which we can perform dimension-
ality reduction using matrix factorization (MF) techniques
(Y = W>X with W ∈ RR×N and X ∈ RR×T ). How-
ever, the default MF models only capture the global low
rank structure, and thus the results are invariant to the
permutation of rows and columns. This is clearly not the
case for time series data, as we expect strong local patterns
and consistency (e.g., observations at t and t + 1 should be
strongly correlated, and X should be smooth over time).
We next review some recent and representative studies on
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introducing temporal smoothness and temporal dynamics
into the lower-dimensional latent variable model.

A central challenge in building latent variable models
is to design appropriate regularization terms to incorpo-
rate temporal dynamics and smoothness, with the goal to
both achieve high accuracy and avoid overfitting. On this
track, many studies have introduce regularization scheme
to achieve temporal smoothness. For example, Chen and
Cichocki [17] developed a non-negative matrix factoriza-
tion model with temporal smoothness by constructing a
difference term using Toeplitz matrix. To incorporate graph-
based side information (e.g., social network), Rao et al.
[18] integrated graph Laplacian regularization in matrix
factorization. This approach can be applied on time series
data by simply adding a chain graph on the temporal
dimension. Yokota et al. [19] introduced total variation
and quadratic variation into tensor factorization to achieve
spatial smoothness. Tan et al. [20] reorganized multivari-
ate traffic time series data as a 4-d (sensor×week×day of
week×time of day) tensor to impute missing values. Al-
though this approach does not model temporal smoothness
explicitly, the factorization on the 4-d structure is able to
learn repeated/reproducible temporal patterns (e.g., daily
and weekly). In practice, the regularization scheme are very
effective in preserving temporal smoothness. However, on
the other hand, these models can only perform interpolation
(e.g., imputing missing values at 1 ≤ t ≤ T ) rather than
extrapolation (e.g., predicting values at t = T + 1).

In order to achieve extrapolation/prediction, we need
a generative mechanism on X instead of smoothing. On
this track, linear dynamical systems/linear Gaussian state
space models have been introduced. For example, Sun et al.
[21] presented a dynamic matrix factorization (collaborative
Kalman filtering) model for large-scale multivariate time
series. Rogers et al. [22] proposed multilinear dynamical
systems (MLDS) by integrating LDS and Tucker decompo-
sition to model tensor time series data. Bahador et al. [23]
developed a low-rank tensor learning method to efficiently
learn patterns from multivariate spatiotemporal data. Cai
et al. [24] developed a probabilistic temporal tensor decom-
position model with higher-order temporal dynamics. Yu
et al. [15] proposed to impose AR process to regularize
the temporal factor matrix. Takeuchi et al. [16] extended
[15] to model not only temporal dynamics but also spatial
correlations in tensor data by introducing an additional spa-
tial autoregressive mechanism. Jing et al. [6] employed AR
process constraints on the core tensor in Tucker decompo-
sition. Essentially, these matrix/tensor factorization-based
algorithms are scalable to model large-scale spatiotemporal
data and offer a natural solution to deal with the missing
data problem. However, in modeling the latent variables
and temporal smoothness, these models have to introduce
various regularization terms and parameters, which need to
be tuned carefully to ensure model accuracy and avoid over-
fitting. The parameter tuning procedure is computationally
very expensive, and more importantly, the procedure has to
be done for each particular application/task (i.e., input data
set) as there exist no universal/automatic solutions.

In addition to state space-based MF models, another
direction is to use Gaussian processes to model the la-
tent factors. Wang et al. [25] introduced Gaussian process

dynamical systems (GPDS) as an extension of Gaussian
process latent variable models [26]. Temporal dynamics is
introduced by a dynamical prior on the latent space X .
High-order models of GPDM are also developed to better
capture temporal dynamics [27]. However, GPDM are com-
putationally very expensive for large-scale data set with
two kernel matrices of T × T . In addition, the estimation
of hyperparameters is complex kernel functions may end
up with local optima. Damianou et al. [28] developed a
variational inference algorithm for GPDS, and Zhao and
Sun [29] took a further step by taking the dependencies
among different time series into account with a convolved
process. By doing so, the estimation and inference on one
time series can also leverage information from other time
series. Overall, GPDM are computationally very expensive;
MF based-models (collaborative filtering), on the hand, can
also achieve information sharing through the low-rank as-
sumption with less cost.

2.2 Bayesian Factorization for Incomplete Matri-
ces/Tensors

Despite the parameter tuning problem, most of the fac-
torization models above only provide point estimates for
imputation/prediction tasks. This becomes a critical concern
for real-world applications that are sensitive to uncertainties
and risks. Since the introduction of Bayesian Probabilis-
tic Matrix Factorization (BPMF) [30], Bayesian treatment
has been used extensively to address the overfitting and
the parameter tuning problems in probabilistic factoriza-
tion models. For example, Luttinen et al. [31] developed a
Bayesian robust factor analysis (FA) for incomplete matrices,
which can better address the overfitting problem in tradi-
tional Bayesian PCA [32]. A Bayesian tensor factorization
is proposed in [33], which can automatically determine
the CP rank. Chen et al. [34] developed an augmented
Bayesian tensor factorization model to estimate the poste-
rior distribution of missing values in spatiotemporal traffic
data. However, these models essentially focus on the global
matrix/tensor factorization without explicitly modeling the
local temporal and spatial dependencies in factor matrices.
To model temporal smoothness, dynamical factorization
models have been developed recently by incorprating a
first-order Markovian/state-space assumption. For exam-
ple, Xiong et al. [12] integrated a first-order dynamical
structure to characterize temporal dependencies in Bayesian
Gaussian tensor factorization. Luttinen and Ilin [13], Adams
et al. [35], and Zhou et al. [36] imposed Gaussian process
priors on the factor matrices in probabilistic factorization,
thus allowing factor to incorporate side (spatial/temporal)
information using specific kernel structures (e.g., Matern
kernel, graph kernel). Although Gaussian process provides
a great framework to model spatiotemporal consistency, in
the meanwhile it also introduces a critical computational
challenge which is estimating the hyperparameters in ker-
nels.

In this paper, we propose a novel Bayesian Tempo-
ral Factorization (BTF) framework that can simultaneously
address the regularization parameter tuning problem and
the uncertainty estimate problem. BTMF can be considered
the Bayesian counterpart of Yu et al. [15] by replacing the

Authorized licensed use limited to: McGill University. Downloaded on July 21,2022 at 01:06:09 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3066551, IEEE
Transactions on Pattern Analysis and Machine Intelligence

4

independent AR assumption on temporal factors with a
more flexible VAR process. BTTF, on the other hand, can
be considered an extension of the temporal collaborative
filtering model by Xiong et al. [12] with a VAR prediction
mechanism.

3 PROBLEM DESCRIPTION

We assume a spatiotemporal setting for multidimensional
time series data throughout this paper. In general, modern
spatiotemporal data sets collected from sensor networks can
be organized as matrix and tensor time series. For example,
we denote by matrix Y ∈ RN×T a multivariate time series
collected from N locations/sensors on T time stamps, with
each row

yi = (yi,1, yi,2, . . . , yi,t−1, yi,t, yi,t+1, . . . , yi,T )

corresponding to the time series collected at location/sensor
i. As another example, the time-varying origin-destination
travel demand can be organized as a third-order time series
tensor Y ∈ RM×N×T with M origin zones and N destina-
tion zones (M = N in most cases), with each time series

yi,j = (yi,j,1, yi,j,2, . . . , yi,j,t−1, yi,j,t, yi,j,t+1, . . . , yi,j,T )

showing the number of trips from i to j over time. Given
the dimension/number of attributes collected from the un-
derlying system, this formulation can be further extended
to even higher-order tensors.

yi,1 yi,2 yi,3 · · · yi,t yi,t+1 yi,t+2 · · ·? ?
historical values near-future values

(a) Matrix time series

yi,j,1 yi,j,2 yi,j,3 · · · yi,j,t yi,j,t+1 yi,j,t+2 · · ·? ?
historical values near-future values

(b) Tensor time series

Fig. 1. Illustration of matrix/tensor time series and the prediction problem
in the presence of missing values (green: observed data; white: missing
data; red: prediction).

As mentioned above, making accurate predictions on
incomplete time series is very challenging, while missing
data problem is almost inevitable in real-world applications.
Fig. 1 illustrates the prediction problem for incomplete time
series data. Here we use (i, t) ∈ Ω and (i, j, t) ∈ Ω to index
the observed entries in matrix Y and tensor Y , respectively.

4 BAYESIAN TEMPORAL MATRIX FACTORIZATION

4.1 Model Specification

Based on the idea of TRMF [15], here we develop the
BTMF framework by employing a Gaussian VAR process
to model the temporal factor matrix. Given a partially
observed matrix Y ∈ RN×T in a spatiotemporal setting,
one can factorize it into a spatial factor matrix W ∈ RR×N

and a temporal factor matrix X ∈ RR×T following general
matrix factorization model:

Y ≈W>X, (1)

and element-wise, we have

yi,t = w>i xt + εi,t, ∀(i, t), (2)

where vectors wi and xt refer to the i-th column of W and
the t-th column of X , respectively, and εi,t is a zero-mean
noise term.

Yt ∈ RN×t
︸ ︷︷ ︸

t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 time slot

xt−3 xt−2 xt−1 xt xt+1︸
︷︷

︸
R

xt+1 ≈ A1xt+1−h1 + ...+ Adxt+1−hd

Yt+1 ∈ RN×(t+1)
︸ ︷︷ ︸

t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 time slot

xt−3 xt−2 xt−1 xt xt+1 xt+2︸
︷︷

︸

R

xt+2 ≈ A1xt+2−h1 + ...+ Adxt+2−hd

Yt+2 ∈ RN×(t+2)
︸ ︷︷ ︸

t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 time slot

xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3︸
︷︷

︸

R

xt+3 ≈ A1xt+3−h1 + ...+ Adxt+3−hd

Fig. 2. A graphical illustration of the rolling prediction scheme using
temporal matrix factorization (green: observed data; white: missing data;
red: prediction).

The standard matrix factorization model is a good ap-
proach to deal with the missing data problem; however, it
cannot capture the temporal dependencies among different
columns in X , which are critical in modeling time series
data. To characterize the temporal dependencies, an AR
regularizer on X is introduced in TRMF [15]:

xt+1 =
∑d

k=1
θk ~ xt+1−hk

+ ut, (3)

where L = {h1, . . . , hk, . . . , hd} is a time lag set (d is the
order of this AR model), θk is a R × 1 coefficient vector,
the symbol ~ denotes the element-wise Hadamard product,
and ut is a Gaussian noise vector. The formulation assumes
the temporal dynamics of factors are independent, and thus
TRMF can be efficiently estimated using Graph Regularized
Alternating Least Squares (GRALS) [18]. Given observed Y
and a trained model, one can first predict x̂t+1 on the latent
temporal factor matrix X and then estimate time series data
at t + 1 with yi,t+1 ≈ w>i x̂t+1. Fig. 2 illustrates a one-step
rolling prediction scheme with real-time data. Therefore, by
performing prediction on X instead of on Y , TRMF offers a
scalable (R� N ) and flexible scheme to model multivariate
time series data.

However, TRMF has two major limitations in practice.
First, although the independent factor assumption in Eq. (3)
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greatly reduces the number of parameters, the complex tem-
poral dynamics, causal relationships and covariance struc-
ture are essentially ignored. Second, as mentioned before,
TRMF requires careful tuning of multiple regularization
parameters. The model may end up with overfitting if
these regularization parameters are not tuned appropriately.
Despite existing parameter tuning solutions (e.g., cross-
validation), it is still computationally very expensive to
tune a model with many regularization parameters by grid
search.

In BTMF, we adopt the VAR process to characterize
dynamic dependencies in X instead of AR:

xt+1 =
∑d

k=1
Akxt+1−hk

+ ut, (4)

where each coefficient matrix Ak (k ∈ {1, ..., d}) is of
size R × R, and ut is i.i.d. vector from N (0,Σ). For
simplicity, we introduce matrix A ∈ R(Rd)×R and vector
vt+1 ∈ R(Rd)×1 as:

A = [A1, . . . , Ad]
>
, vt+1 =



xt+1−h1

...
xt+1−hd


 ,

to summarize all coefficient matrices and correlated vectors.
Therefore, we have xt+1 = A>vt+1 + ut.

Following the principle framework of existing Bayesian
probabilistic matrix/tensor factorization models (e.g., BPMF
in [30] and BPTF in [12]), we build the BTMF framework
following the graphical representation in Fig. 3. Note that
this model is entirely built on observed data in Ω and thus
it can be trained on data sets with missing values. We next
introduce each component in this graphical model in detail.

yi,t+1yi,tyi,t−1

xt−d+1xt−d xt+1xtxt−1

wi

Λwµw

ΣA

τi

α, β

W0, ν0µ0

S0, ν0M0,Ψ0

i ∈ {1, ..., N}

Fig. 3. An overview graphical model of BTMF (time lag set:
{1, 2, . . . , d}). The shaded nodes (yi,t) are the observed data in Ω.

We assume that observed entries are independent in
Y and each entry follows i.i.d. Gaussian distribution with
precision τi (i ∈ {1, . . . , N}):

yi,t ∼ N
(
w>i xt, τ

−1
i

)
, (i, t) ∈ Ω, (5)

where τi is a spatially-varying precision characterizing the
noise level of time series yi. This assumption corresponds
to that the error term εi,t in Eq. (2) follows i.i.d. Gaussian
εi,t ∼ N

(
0, τ−1

i

)
and τi 6= τj as in factor analysis (FA) [31].

TRMF and other probabilistic matrix factorization models
essentially follow the PCA scheme, assuming the noise to
be isotropic (i.e., τi = τj = τ ). BPMF [30] and BPTF [12]
follow the isotropic noise assumption, which is reasonable
since the scale of the data (e.g., rating from 0 to 5) is known
in advance. However, for multivariate time series, we may
expect different series to have a different level of noise.
Therefore, we relax the isotropic noise assumption and make
τi a spatially-varying parameter in the form of FA.

On the spatial factors, we use a simple Gaussian factor
matrix without imposing any dependencies explicitly. The
prior of vector wi (i.e., i-th column of W ) is a multivariate
Gaussian distribution:

wi ∼ N
(
µw,Λ

−1
w

)
, (6)

and we place a conjugate Gaussian-Wishart prior on the
mean vector and the precision matrix:

µw|Λw ∼ N
(
µ0, (β0Λw)−1

)
,Λw ∼ W (W0, ν0) , (7)

where µ0 ∈ RR is a mean vector, and W (W0, ν0) is a
Wishart distribution with a R-by-R scale matrix W0 and
ν0 degrees of freedom.

In modeling the temporal factor matrix X , we re-write
the VAR process as:

xt ∼
{
N (0, IR) , if t ∈ {1, 2, . . . , hd},
N
(
A>vt,Σ

)
, otherwise.

(8)

Since the mean vector is defined by VAR, we place the
conjugate matrix normal inverse Wishart (MNIW) prior on
the coefficient matrix A and the covariance matrix Σ as
follows,

A ∼MN (Rd)×R (M0,Ψ0,Σ) , Σ ∼ IW (S0, ν0) , (9)

where the probability density function for the Rd-by-R
random matrix A has the form:

p (A |M0,Ψ0,Σ) = (2π)
−R2d/2 |Ψ0|−R/2 |Σ|−Rd/2

× exp

(
−1

2
tr
[
Σ−1 (A−M0)

>
Ψ−1

0 (A−M0)
])

,
(10)

with Ψ0 ∈ R(Rd)×(Rd) and Σ ∈ RR×R as covariance
matrices.

For the only remaining parameter τi, we place a Gamma
prior τi ∼ Gamma (α, β), where α and β are the shape and
rate parameters, respectively.

The above specifies the full generative process of BTMF.
Several parameters are introduced to define the prior dis-
tributions, including µ0, W0, ν0, β0, α, β, M0, Ψ0, and S0.
These parameters need to be specified in advance. In the
implementation, we use the same non-informative priors as
in [12], [30], [33] by setting β0 = 1, ν0 = R, µ0 = 0 as a
zero vector, W0 = IR, S0 = IR, Ψ0 = IRd, M0 = 0 as a
zero matrix, and α = β = 10−6. The weak specification of
these parameters has little impact on the final results, as the
large training data (i.e., likelihood) will play a much more
important role in defining the posterior.
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It should be noted that the proposed model can be
considered a special case of DFM [37], [38]:

yi,t = w>i xt + εi,t,

xt+1 =
∑d

k=1
Akxt+1−hk

+ ut,
(11)

where we assume εt to be serially uncorrelated (i.e., εt ∼
i.i.d. N (0,Φ) with Φ being a diagonal matrix filled by τi).

The DFM in Eq. (11) has been extensively studied in
economics and statistics literature [37], [38]. However, most
studies focuses on the identification problem (for better
interpretation) and serial correlation. Two sets of parame-
ters {W,A, {τ}Ni=1,Σ} and {WP>, PA, {τ}Ni=1, PΣP>} are
equivalent for any R×R orthogonal matrix P . For example,
to ensure identification, Aguilar and West [39] proposed to
restrict W to be a block lower triangular matrix with each
row having a separate and fixed prior. This assumption,
however, restricts the applicability of the model, since the
priors are essentially unknown but important for large data
sets.

For the time series prediction tasks, we would like to
highlight that we are more interested in the accuracy and
uncertainty of the prediction results than the identification
of parameters. Therefore, the proposed BTMF simply fol-
lows the general BPMF [12], [30] framework by placing
a flexible conjugate Gaussian-Wishart prior on the mean
vector and precision matrix of wi as in Eq. (7), without
imposing any identification constraints.

4.2 Model Inference
Here we rely on the MCMC technique to perform Bayesian
inference. Specifically, we introduce a Gibbs sampling al-
gorithm by deriving the full conditional distributions for
all parameters and hyperparameters. Thanks to the use
of conjugate priors in Fig. 3, we can write down all the
conditional distributions analytically. Below we summarize
the Gibbs sampling procedure.
Sampling (µw,Λw). The conditional distribution is given
by a Gaussian-Wishart:

p (µw,Λw|−) = N (µ∗w, ((β0 +N) Λw)
−1

)×W (W ∗w, ν
∗
w) ,

where

µ∗w =
1

β0 +N
(β0µ0 +Nw̄) , ν∗w = ν0 +N,

(W ∗w)
−1

= W−1
0 +NSw +

β0N

β0 +N
(w̄ − µ0) (w̄ − µ0)

>
,

w̄ =
1

N

∑N

i=1
wi, Sw =

1

N

∑N

i=1
(wi − w̄) (wi − w̄)

>
.

Sampling (A,Σ). Given the MNIW prior, the corresponding
conditional distribution is

p (A,Σ|−) =MN (M∗,Ψ∗,Σ)× IW (S∗, ν∗) , (12)

and the parameters are given by:

Ψ∗ =
(

Ψ−1
0 +Q>Q

)−1
,

M∗ = Ψ∗
(

Ψ−1
0 M0 +Q>Z

)
,

S∗ = S0 + Z>Z +M>0 Ψ−1
0 M0 − (M∗)> (Ψ∗)−1

M∗,

ν∗ = ν0 + T − hd,

where the matrices Z ∈ R(T−hd)×R and Q ∈ R(T−hd)×(Rd)

are defined as:

Z =



x>hd+1

...
x>T


 , Q =



v>hd+1

...
v>T


 .

Sampling spatial factorwi. The conditional posterior distri-
bution p (wi | yi, X, τi,µw,Λw) is a Gaussian distribution.
Thus, we can sample wi|− ∼ N (µ∗i , (Λ

∗
i )
−1

) with

Λ∗i = τi
∑

t:(i,t)∈Ω
xtx

>
t + Λw,

µ∗i = (Λ∗i )
−1
(
τi
∑

t:(i,t)∈Ω
xtyi,t + Λwµw

)
.

(13)

Sampling temporal factor xt. Following [12], we perform a
single-site update on the latent variable xt. Given the VAR
process, the conditional distribution of xt is also a Gaussian.
However, for a particular time lag set, we need to define
different updating rules for 1 ≤ t ≤ T − h1 and T − h1 <
t ≤ T . Overall, the conditional distribution can be written
as p (xt|−) = N (µ∗t ,Σ

∗
t ) with

Σ∗t =

(∑
i:(i,t)∈Ω

τiwiw
>
i +Mt + Pt

)−1

,

µ∗t = Σ∗t

(∑
i:(i,t)∈Ω

τiwiyi,t +Nt +Qt

)
,

(14)

where Mt and Nt are two auxiliary variables. In general
cases where 1 ≤ t ≤ T − h1, we define Mt and Nt as:

Mt =
∑d

k=1,hd<t+hk≤T
A>k Σ−1Ak,

Nt =
∑d

k=1,hd<t+hk≤T
A>k Σ−1ψt+hk

,

ψt+hk
= xt+hk

−
∑d

l=1,l 6=k
Alxt+hk−hl

.

Otherwise, we define Mt = 0 and Nt = 0.
The variables Pt and Qt in Eq. (14) are given by:

Pt =

{
IR, if t ∈ {1, 2, . . . , hd},
Σ−1, otherwise,

Qt =

{
0, if t ∈ {1, 2, . . . , hd},
Σ−1

∑d
l=1Alxt−hl

, otherwise.

Noted that the single-site update for xt is easy to im-
plement but it may give slow mixing for large T . Our
numerical experiment shows this simple approach is still
very efficient. One can also apply the forward-filtering
backward-sampling algorithm/Kalman filter for state-space
models with higher computational cost (see e.g., [40]) so that
updating xt may benefit from faster mixing.
Sampling precision τi. Given the conjugate Gamma prior,
the conditional distribution of τi is also a Gamma distribu-
tion. Thus, we sample τi|− ∼ Gamma (α∗i , β

∗
i ) with

α∗i =
1

2

∑
t:(i,t)∈Ω

1(yit) + α,

β∗i =
1

2

∑
t:(i,t)∈Ω

(yit −w>i xt)2 + β,
(15)

where the operator 1(·) denotes the indicator function that
holds 1(yit) = 1 if yit is observed, and 1(yit) = 0 otherwise.
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4.3 Model Implementation
BTMF imputation. Based on the aforementioned sampling
processes, we summarize the MCMC inference algorithm
to impute missing values in the partially observed matrix
time series data as Algorithm 1. In training the model, we
first run the MCMC algorithm for m1 iterations as burn-
in and then take samples from the following m2 iterations
for estimation. Note that one can keep all the m2 samples
to compute not only the mean as a point estimate but also
the confidence interval and the variance for risk-sensitive
applications.

Algorithm 1 BTMF imputation

Input: Data matrix Y ∈ RN×T , Ω as the set of observed
entries in Y , L = {h1, h2, . . . , hd} as the time lag set,
number of burn-in iterations m1, and number of sam-
ples used in estimation m2. Initialization of factor ma-
trices {W,X} and VAR coefficient matrix A ∈ RRd×R.

Output: Estimated matrix Ŷ ∈ RN×T .
1: for iter. = 1 to m1 +m2 do
2: Draw hyperparameters {µw,Λw}.
3: for i = 1 to N (can be in parallel) do
4: Draw wi ∼ N (µ∗w, (Λ

∗
w)−1).

5: end for
6: Draw Σ ∼ IW (S∗, ν∗) and A ∼MN (M∗,Ψ∗,Σ).
7: for t = 1 to T do
8: Draw xt ∼ N (µ∗t ,Σ

∗
t ).

9: end for
10: for i = 1 to N do
11: Draw precision τi ∼ Gamma(α∗i , β

∗
i ).

12: end for
13: if iter. > m1 then
14: Compute Ỹ = W>X . Collect sample Ỹ .
15: end if
16: end for
17: return Ŷ as the average of the m2 samples of Ỹ .

BTMF forecasting. To better support real-time prediction,
we build an efficient multi-step rolling prediction scheme
based on Algorithm 1. The key idea is to update model
parameters when new data comes instead of performing
full retraining as in TRMF. In doing so, we only consider
the future latent factor X as new parameters to be sam-
pled/updated over time as in [41].

Assume that we have historical data Y ∈ RN×T . Denote
by δ the window length of multi-step predictions and S
the total rolling windows. To make prediction with BTMF
for s = 1 (i.e., initial prediction), we gather m2 samples
which consist of {X(`),W (`), A(`),Σ(`)}m2

`=1 as shown in
Algorithm 1 and draw predicted temporal factors as follows,

xT+1 ∼ N
(∑

k
A

(`)
k x

(`)
T+1−hk

,Σ(`)
)
,

...

xT+δ ∼ N
(∑

k
A

(`)
k x

(`)
T+δ−hk

,Σ(`)
)
,

(16)

where we have X
(`)
1 = (xT+1, · · · ,xT+δ) ∈ RR×δ , and

the average of W (`)>X(`)
1 , ` = 1, . . . ,m2 is considered as

the predicted values. We then combine X(`) and X
(`)
1 to

perform prediction on the next rolling window (i.e., s = 2).

Given that Y contains substantial missing and corrup-
tion, the estimation of X(`)

1 (s = 1) may have large error and
the rolling scheme will spread the error to the estimation of
X

(`)
2 (s = 2). To alleviate this effect, we use the last γ · δ (γ is

a positive integer) columns of YT+δ(s−1) ∈ RN×(T+δ(s−1))

as the incremental data matrix

Ys = (yT+δ(s−γ−1)+1,yT+δ(s−γ−1)+2, . . . ,yT+δ(s−1))

of size N × (γ · δ) to re-update the corresponding xts.
Thus, γ = 1 corresponds to the case where we only use
the most recent values (i.e., streaming data) to update x.
By applying the samples of {X(`),W (`), τ (`), A(`),Σ(`)}m2

`=1,
we first draw temporal factors xt ∼ N (µ∗t ,Σ

∗
t ) as defined

in Eq. (14) for time T + δ(s − γ − 1) + 1 to T + δ(s − 1).
Then, we collect the samples of predicted temporal factors
as in Eq. (16) and make predictions for time T + δ(s−1) + 1
to T + δs accordingly. We summarize the implementation of
BTMF forecasting in Algorithm 2.

Algorithm 2 BTMF forecasting
Input: L = {h1, h2, . . . , hd} as the time lag set, and number

of samples used in estimation m2.
Output: Predicted matrix Ŷ ∈ RN×(δ·S).

Initialize β0 = 1, ν0 = R. Set γ = 10.
1: Train BTMF (Algorithm 1) on data Y ∈ RN×T , collect
m samples of W,X,A, τ ,Σ, and make predictions on
temporal factors as shown in Eq. (16).

2: for s = 2 to S do
3: Gather the incremental data Ys ∈ RN×(γ·δ).
4: for ` = 1 to m2 do
5: Draw γ · δ temporal factors.
6: for κ = 1 to δ (make prediction) do
7: t0 = T + δ(s− 1) + κ, draw xt0 ∼ N (µ∗t0 ,Σ

∗
t0).

8: end for
9: Compute Ỹ (`)

s = W (`)>X(`)
s .

10: end for
11: Collect sample Ỹs = {Ỹ (1)

s , . . . , Ỹ
(m2)
s }.

12: end for
13: return Ŷ as the average of the m2 samples of Ỹ .

Since the Bayesian model has been trained using all
available data, the MCMC algorithm for updating temporal
factors is expected to converge very fast in a few iterations
and them2 samples can be generated very efficiently. Again,
we would like to emphasize that we only consider temporal
factors xt as the variable to sample to achieve high efficiency
in this rolling prediction application. In the meanwhile, as
the updating is only made on X , we would still expect
significant error accumulation when γ is small. To address
this issue, one may choose to make a full retrain when
the prediction error becomes large. For example, we can
following the incremental/global learning scheme in [42] to
achieve both efficiency and accuracy.

5 BAYESIAN TEMPORAL TENSOR FACTORIZATION

It is straightforward to extend BTMF to model multidimen-
sional (order>2) tensor time series. We use a third-order
tensor Y ∈ RM×N×T as an example throughout the section.
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5.1 Model Specification

To model multidimensional data, we employ the CANDE-
COMP/PARAFAC (CP) decomposition [43], which approx-
imates Y by the sum of R rank-one tensors:

Y ≈
∑R

r=1
ur ◦ vr ◦ xr, (17)

where ur ∈ RM , vr ∈ RN , and xr ∈ RT are the r-th column
of factor matrices U ∈ RM×R, V ∈ RN×R, and X ∈ RT×R,
respectively (see Fig. 4). The symbol ◦ denotes vector outer
product. Essentially, this model can be considered a high-
order extension of matrix factorization in Eq. (1).

N

︸ ︷︷ ︸

M

︸
︷︷

︸

T︸
︷︷

︸
yijt

(i, j, t)-th

Y ∈ RM×N×T

≈

U ∈ RM×R

ui

V ∈ RN×R

vj

X ∈ RT×Rxt

Fig. 4. A graphical illustration of CP factorization.

The CP decomposition provides us a natural way to
extend BTMF to tensors by assuming that each element
follows a Gaussian distribution:

yi,j,t ∼ N
(∑R

r=1
uirvjrxtr, τ

−1
ij

)
, (i, j, t) ∈ Ω, (18)

where τij is the spatially-varying precision for the (i, j)-th
time series. Note that when the tensor is large, sparse, and
heterogeneous, it becomes challenging to learn the noise
level for each individual time series. In this case, we may
assume isotropic noise in the form of probabilistic PCA
(τij = τ ) for simplicity.

Following the same routine as BTMF, we define the gen-
erative process of Bayesian Temporal Tensor Factorization
(BTTF) as follows,

ui ∼ N
(
µu,Λ

−1
u

)
,

vj ∼ N
(
µv,Λ

−1
v

)
,

τ ∼ Gamma (α, β) ,

(19)

and the same VAR model in Eq. (8) can be used to model
temporal factor matrix X , and the prior is defined as:

xt ∼
{
N (0, IR) , if t ∈ {1, 2, . . . , hd},
N
(
A>vt,Σ

)
, otherwise,

(20)

where in this setting, the same Gaussian-Wishart priors as
in BTMF can be placed on hyperparameters.

In BTTF, we may consider both U and V as spatial
factor matrices, while in fact they may characterize any
features in which dependencies are not explicitly encoded
(e.g., type of sensors in [16], [23]). It should be noted that the
BPTF algorithm proposed in [12] is a special case of BTTF.
Specifically, BPTF corresponds to the model where L = {1},
A1 = IR (identity matrix instead of a free parameter matrix),
and noise is isotropic (i.e., τij = τ ).

5.2 Model Inference
Regarding posterior inference, the main difference between
BTTF and BTMF is the posterior distribution of factor matri-
ces. Specifically, the posterior distribution of xt in BTTF can
be written as p (xt|−) = N (µ∗t ,Σ

∗
t ) with

Σ∗t =

(∑
i,j:(i,j,t)∈Ω

τijwijw
>
ij +Mt + Pt

)−1

,

µ∗t = Σ∗t

(∑
i,j:(i,j,t)∈Ω

τijwijyijt +Nt +Qt

)
,

(21)

wherewij = ui~vj ∈ RR, and {Mt, Nt, Pt, Qt} are defined
in the same way as in BTMF (see Eq. (14)).

The posterior distribution of ui is N (ui|µ∗i , (Λ∗i )−1
)

with

Λ∗i =
∑

j,t:(i,j,t)∈Ω
τijwjtw

>
jt + Λu,

µ∗i = (Λ∗i )
−1
(∑

j,t:(i,j,t)∈Ω
τijwjtyijt + Λuµu

)
,

(22)

where wjt = vj ~ xt ∈ RR. The conditional posterior
distribution of vj is defined in the same way.

Under the assumptions above, the full conditionals
p(µu,Λu|−) and p(µv,Λv|−) are of the same Gaussian-
Wishart form as p(µw,Λw|−) described in BTMF in Section
4.2. Similarly, the full conditional p (A,Σ|−) is also of the
same form as Eq. (12) in BTMF.

For precision, we can simply adapt Eq. (15) to sample
τij for each time series (i, j). When assuming the noise
is Gaussian isotropic, the posterior distribution of τ is
Gamma(α∗, β∗) where

α∗ =
1

2

∑
(i,j,t)∈Ω

1(yijt) + α,

β∗ =
1

2

∑
(i,j,t)∈Ω

(yi,j,t −
∑R

r=1
uirvjrxtr)

2 + β.
(23)

5.3 Model Implementation
We summarize the Gibbs sampling algorithm for missing
data imputation of BTTF as Algorithm 3. For making rolling
prediction with tensor data, we apply the same prediction
mechanism of BTMF (see Algorithm 2) to adapt BTTF
model.

6 EXPERIMENTS

In this section we apply BTMF and BTTF on several real-
world spatiotemporal data sets for both imputation and
prediction tasks, and evaluate the effectiveness of these two
models against recent state-of-the-art methods. We use the
mean absolute percentage error (MAPE) and root mean
square error (RMSE) as performance metrics:

MAPE =
1

n

n∑

i=1

|yi − ŷi|
yi

×100, RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2
,

where n is the total number of estimated values, and yi
and ŷi are the actual value and its estimation, respectively.
For MCMC, we find the chains mix very fast on all data
sets. The point estimates are obtained by averaging over
m2 = 200 Gibbs iterations. The Python code and adapted
data sets for our experiments are publicly available at https:
//github.com/xinychen/transdim.
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TABLE 1
Performance comparison (in MAPE/RMSE) for imputation tasks on data sets (G), (H), (S), and (L).

Data Missing BTMF BTRMF TRMF BPMF BGCP BATF HaLRTC

(G)
40%, RM 7.61/3.29 7.51/3.24 7.77/3.26 9.69/4.11 8.31/3.59 8.29/3.58 8.86/3.61
60%, RM 8.20/3.51 7.95/3.42 8.48/3.52 10.19/4.30 8.42/3.64 8.43/3.64 9.82/3.96
40%, NM 10.18/4.31 10.31/4.38 10.36/4.36 10.39/4.40 10.24/4.33 10.14/4.30 10.88/4.38

(H)
40%, RM 24.0/30.0 22.7/33.5 23.2/36.6 32.4/41.8 19.6/42.2 19.9/44.9 19.0/31.8
60%, RM 25.2/35.2 24.7/37.1 24.4/41.2 39.9/46.7 20.2/34.9 20.5/38.8 20.1/36.2
40%, NM 25.9/46.0 27.1/51.7 26.0/37.9 35.0/45.4 20.7/45.6 21.2/40.5 21.5/53.1

(S)
40%, RM 5.96/3.75 5.95/3.75 6.17/3.80 6.79/4.18 7.42/4.49 7.40/4.47 6.76/3.83
60%, RM 6.15/3.83 6.13/3.83 6.48/3.92 7.38/4.49 7.47/4.52 7.45/4.50 7.90/4.34
40%, NM 9.27/5.35 9.33/5.38 9.19/5.30 9.19/5.30 10.09/5.75 9.94/5.68 10.19/5.27

(L)
40%, RM 9.15/2.26 9.15/2.26 9.20/2.23 9.14/2.21 9.21/2.24 9.21/2.24 9.11/2.17
60%, RM 9.32/2.30 9.32/2.30 9.36/2.27 9.28/2.24 9.34/2.27 9.33/2.27 9.51/2.27
40%, NM 9.42/2.32 9.42/2.32 9.57/2.33 9.47/2.30 9.54/2.33 9.55/2.33 9.84/2.35

Best results are highlighted in bold fonts.

TABLE 2
Performance comparison (in MAPE/RMSE) for prediction tasks on data sets (G), (H), (S), and (L) with different time horizons.

Data Missing BTMF BTRMF TRMF

δ = 2 δ = 4 δ = 6 δ = 2 δ = 4 δ = 6 δ = 2 δ = 4 δ = 6

(G)

Original 11.01/4.44 11.22/4.54 11.59/4.68 11.37/4.58 11.81/4.75 12.34/4.94 11.60/4.55 11.96/4.61 12.28/4.90
40%, RM 11.22/4.51 11.52/4.63 11.64/4.69 11.41/4.57 11.67/4.67 12.45/5.00 12.72/4.84 12.82/4.85 13.41/5.14
60%, RM 11.44/4.58 11.66/4.66 11.93/4.78 11.68/4.67 12.23/4.82 12.64/5.01 13.85/5.19 13.94/5.19 14.30/5.33
40%, NM 11.35/4.60 11.64/4.65 11.80/4.75 11.99/4.77 12.26/4.93 12.96/5.19 12.80/4.88 12.84/4.88 13.32/5.11

(H)

Original 25.4/34.7 27.3/36.0 27.7/37.5 25.7/34.1 27.6/36.2 31.0/38.0 22.5/30.6 24.1/32.6 25.4/33.9
40%, RM 27.0/38.1 26.6/40.1 27.4/42.7 30.0/40.0 29.8/41.9 30.2/42.5 23.8/35.8 27.3/38.4 27.3/40.4
60%, RM 26.8/41.1 27.2/42.3 28.5/43.6 30.4/43.2 29.6/43.9 31.7/44.5 25.8/41.9 25.1/44.2 26.8/46.5
40%, NM 27.5/48.6 29.2/45.3 30.7/47.7 29.8/42.5 31.7/49.4 39.7/50.5 25.6/38.6 28.0/40.4 27.7/42.6

(S)

Original 10.39/5.63 10.82/5.83 11.18/6.02 11.44/6.21 12.30/6.60 12.97/7.00 10.45/5.58 10.65/5.70 11.15/5.92
40%, RM 10.52/5.69 10.96/5.89 11.37/6.09 11.58/6.25 12.34/6.62 12.79/6.93 11.37/5.85 11.53/5.96 11.98/6.15
60%, RM 11.60/6.30 11.21/6.10 12.80/7.03 11.58/6.24 12.36/6.62 12.99/6.99 12.38/6.19 12.67/6.37 12.88/6.42
40%, NM 10.93/5.96 11.17/6.03 11.55/6.24 11.66/6.35 12.54/6.73 13.38/7.29 11.63/5.98 11.68/6.02 12.00/6.17

(L)

Original 11.21/2.67 11.36/2.70 12.01/2.82 12.69/3.17 14.82/3.89 18.10/4.09 11.35/2.68 11.64/2.79 12.80/3.05
40%, RM 11.41/2.70 11.54/2.73 12.15/2.84 12.25/3.03 12.35/2.98 15.68/4.03 11.49/2.71 11.70/2.76 12.60/2.95
60%, RM 11.53/2.72 11.69/2.75 12.28/2.86 12.42/3.01 13.21/3.25 14.87/3.70 11.95/2.79 12.02/2.80 12.68/2.95
40%, NM 11.37/2.71 11.55/2.74 12.11/2.85 13.80/3.47 14.44/3.65 17.54/4.40 11.62/2.72 12.78/3.14 12.30/2.87

Best results are highlighted in bold fonts.

6.1 BTMF

Data set (G): Guangzhou urban traffic speed1. This data set
registered traffic speed data from 214 road segments over
two months (61 days from August 1 to September 30, 2016)
with a 10-minute resolution (144 time intervals per day) in
Guangzhou, China. We organize the raw data set into a time
series matrix of 214 × 8784 and there are 1.29% missing
values.
Data set (H): Hangzhou metro passenger flow2. This data
set collected incoming passenger flow from 80 metro sta-
tions over 25 days (from January 1 to January 25, 2019) with
a 10-minute resolution in Hangzhou, China. We discard the
interval 0:00 a.m. – 6:00 a.m. with no services (i.e., only
consider the remaining 108 time intervals) and re-organize
the raw data set into a time series matrix of 80× 2700. The
flow data is highly heterogeneous, with min=0, max=3334,
and mean=135.

1. https://doi.org/10.5281/zenodo.1205229
2. https://tianchi.aliyun.com/competition/entrance/231708/

information

Data set (S): Seattle freeway traffic speed3. This data set
collected freeway traffic speed from 323 loop detectors with
a 5-minute resolution over the whole year of 2015 in Seattle,
USA. We choose the data from January 1 to January 28 (i.e.,
4 weeks) as our experiment data, and organize the data set
into a time series matrix matrix of 323× 8064.
Data set (L): London movement speed. This data set is
created by Uber movement project4, which includes the
average speed on a given road segment for each hour of
each day in April 2019. In this data set, there are about
220,000 road segments. Note that this data set only includes
road segments with at least 5 unique trips in that hour. There
are up to 73.09% missing values in total and most missing
values are produced during night. We choose the subset of
this raw data set into a time series matrix of 35912× 720 in
which each time series has at least 70% observations.
Baselines. We choose 1) TRMF [15] and 2) its fully Bayesian
counterpart—BTRMF—as main baseline models. Note that
BTRMF can be considered a special case of BTMF with the

3. https://github.com/zhiyongc/Seattle-Loop-Data
4. https://movement.uber.com/
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(a) Movement speed of road segment #1.
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(b) Movement speed of road segment #2.
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(c) Movement speed of road segment #3.

Fig. 5. Imputed speed (mph) of BTMF on data set (L) with 60% RM. Black dots show the partially observed (training) data, while red curves show
the imputed speed values by BTMF.

Algorithm 3 BTTF imputation

Input: data tensor Y ∈ RM×N×T , Ω as the set of observed
entries in Y , L = {h1, h2, . . . , hd} as the time lag set,
number of burn-in iterations m1, and number of sam-
ples used in estimation m2. Initialization of factor ma-
trices {U, V,X} and VAR coefficient matrix A ∈ RRd×R.

Output: estimated tensor Ŷ ∈ RM×N×T .
Initialize β0 = 1, ν0 = R, µ0 = 0 as a zero vector,
W0 = IR (S0 = IR and Ψ0 = IRd) as an identity matrix,
M0 as all-zero mean matrix, and α, β = 10−6.

1: for iter. = 1 to m1 +m2 do
2: Draw hyperparameters {µu,Λu,µv,Λv}.
3: for i = 1 to M (can be in parallel) do
4: Draw ui ∼ N (µ∗u, (Λ

∗
u)−1).

5: end for
6: for j = 1 to N (can be in parallel) do
7: Draw vj ∼ N (µ∗v, (Λ

∗
v)
−1).

8: end for
9: Draw Σ ∼ IW (S∗, ν∗) and A ∼MN (M∗,Ψ∗,Σ).

10: for t = 1 to T do
11: Draw xt ∼ N (µ∗t ,Σ

∗
t ).

12: end for
13: Draw τij or τ (isotropic noise) ∼ Gamma(α∗, β∗).
14: if iter. > m1 then
15: Compute Ỹ =

∑R
r=1 ur ◦vr ◦xr . Collect sample Ỹ .

16: end if
17: end for
18: return Ŷ as the average of the m2 samples of Ỹ .

independent factor constraint in Eq. (3) instead of a VAR
in Eq. (4) (i.e., restricting Ak to be diagonal). Similar to
BTMF, we use a spatially-varying precision parameter τi
to characterize the noise level of time series yi in BTRMF
with the exception of (H). Given the great heterogeneity in
Hangzhou data, BTMF may give a large variance τ−1

i on a
particular time series. To avoid this issue, we assume the
noises are both Gaussian isotropic in BTMF and BTRMF on

(H). We also consider a family of tensor-based models for
missing data imputation, including: 3) Bayesian Gaussian
CP decomposition (BGCP) [44], which is a high-order exten-
sion of BPMF [30]; 4) Bayesian Augmented Tensor Factor-
ization (BATF) [34]; 5) HaLRTC: High-accuracy Low-Rank
Tensor Completion [45]. These models are chosen because
matrix time series data collected from multiple days can be
re-organized as a third-order (location×day×time of day)
tensor, and in this case tensor factorization can effectively
learn the global patterns provided by the additional “day”
dimension. In fact, these tensor models have shown superior
performance in various imputation tasks (e.g., traffic data
and images). For prediction, we compare BTMF against
TRMF and BTRMF. In doing so, we adapt TRMF/BTRMF to
an implementation which is similar to the scheme of BTMF
forecasting.
Experiment setup. We assess the performance of these mod-
els under two common missing data scenarios—random
missing (RM) and non-random missing (NM). For RM,
we simply remove a certain amount of observed entries
in the matrix randomly and use these entries as ground
truth to evaluate MAPE and RMSE. The percentages of
missing values are set as 40%/60% for all these data sets.
For NM, we apply a fiber/block missing experiment by
randomly choosing certain location×day combinations and
removing all the observations in each combination. The
percentages of missing values are set as 40%. Again, the re-
moved but actually observed entries are used for evaluation.
The NM scenario corresponds to the cases where sensors
have a certain probability to fail on each day. For tensor-
based baseline models (BGCP, BATF, and HaLRTC), we re-
organize the matrix into a third-order (location×day×time
slot) tensor as input. For matrix based models, we use the
original time series matrix (location×time series) as input.
For BTMF, BTRMF, and TRMF, we use a small time lag set
L = {1, 2, T0} for all data sets, where T0 denotes the number
of time slots per day. For TRMF, we perform grid search
from {50, 5, 0.5, 0.05} for each regularization parameter as
in [15]. We set the learning rate in HaLRTC as ρ = 10−5. We
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set the minimum low rank asR = 10 for all the factorization
models.

For prediction tasks, we apply some multi-step rolling
prediction experiments as described in Section 4.3. We
evaluate these models by making rolling predictions over
last seven days for all these data sets. Total number of
predicted time slots are 7 × 144, 7 × 108, 7 × 288, and
7 × 24 for data set (G), (H), (S), and (L), respectively. For
data set (G), (H), (S), and (L), we set the time horizon δ
of each rolling prediction as {2, 4, 6}. To guarantee model
performance on multi-step prediction tasks, we set time lags
as L = {1, 2, 3, T0, T0 +1, T0 +2, 7T0, 7T0 +1, 7T0 +2}. Note
that BTMF, BTRMF, and TRMF does not impute missing
values for these prediction tasks. The low rank of these
models is set as R = 10.
Results and analysis. Table 1 shows the imputation per-
formance of BTMF and other baseline models for data sets
(G), (H), (S), and (L). The results in all experiments are
given by “MAPE/RMSE”. Of the reported MAPE/RMSE,
non-random missing values seem to be more difficult to
reconstruct with all these imputation models than random
missing values. As can be seen, the proposed BTMF and the
adapted BTRMF clearly outperform TRMF in most cases.
The results also reveal that Bayesian treatment over tem-
poral matrix factorization is more superior than manually
controlling the regularizers. Essentially, among all matrix
models, the imputation performance of BPMF is inferior to
the temporal matrix factorization models—BTMF, BTRMF,
and TRMF—especially in RM scenarios because the local
temporal consistency is ignored in BPMF. Tensor models
like BGCP, BATF, and HaLRTC also achieve competitive
results due to the global temporal consistency introduced
by the “day” dimension. Our results suggest that BTMF
(or BTRMF) inherits the advantages of both matrix models
(e.g., TRMF and BPMF) and tensor models (e.g., BGCP
and BATF) even with a very simple time lag set: It not
only provides a flexible and automatic inference technique
for model parameter estimation, but also offers superior
imputation performance by integrating temporal dynamics
into matrix factorization. As shown in Fig. 5, our proposed
BTMF can get the true signals of movement speed values
and accurate imputations on the sparsely sensed data.

We next conduct the experiment for making multi-step
rolling prediction on the four data sets. Table 2 shows the
prediction performance of BTMF and other baseline models.
As we can see, BTMF outperforms TRMF and BTRMF in
most cases. Comparing BTRMF and TRMF, we find that the
well tuned TRMF actually performs better than BTRMF in
most cases. A possible reason is that we have performed
extensive tuning to find the right regularization parameters
for TRMF. Thus, the comparision may not be fair since we
only run BTRMF once with non-informative priors.

The most interesting analysis is to compare BTMF and
BTRMF. Both models are Bayesian with identical priors.
The only difference is that we restrict Ak to be diagonal
in BTRMF (independent factor assumption in Eq. (3)) while
the VAR dynamics in Eq. (4) is integrated in BTMF. The
results in Table 2 show that BTMF consistently outperform
BTRMF. This further verifies the superiority of introducing
the VAR prior on the temporal latent factor, which has better
performance in characterizing the covariance structures and

causal relationships than the simple AR mechanism. We
next show some visualizations on the prediction perfor-
mance of BTMF. As shown in Fig. 6, our proposed BTMF
achieves very accurate prediction results on the Hangzhou
metro passenger flow time series data, and the accuracy can
be guaranteed even a considerable amount (i.e., 40%) of the
input sequence is missing. Some examples of forecasting
results under severe missingness are provided in Fig. 6(c)
and (f). Fig. 7 shows an example on the prediction results
from BTMF on the London movement data. As we can see,
BTMF not only learns the right temporal dynamics from
partially observed data, but also can mitigate the impacts of
large noise.

6.2 BTTF
Data set (N): NYC taxi5. This data set registered trip
information (pick-up/drop-off locations and start time) for
different types of taxi trips. For the experiment, we choose
the trips collected during May and June, 2018 (61 days)
and organize the raw data into a third-order (pick-up
zone×drop-off zone×time slot) tensor. We define in total
30 pick-up/drop-off zones and the temporal resolution for
aggregating trips is selected as 1h. The size of this spatiotem-
poral tensor is 30× 30× 1464.
Data set (P): Pacific surface temperature6. This data set col-
lected monthly sea surface temperature on the Pacific over
396 consecutive months from January 1970 to December
2002. The spatial locations are expressed as grids of 2-by-
2 degrees. The grid amount is 30 × 84, and as a result, the
temperature tensor is of size 30× 84× 396.
Baselines. For the imputation tasks, we select some baseline
models, including 1) fully Bayesian model of Temporal
Regularized Tensor Factorization (BTRTF) with independent
temporal factors (Eq. (3)), as a natural higher-order exten-
sion of BTRMF. Other baseline imputation models include
2) BPTF [12], 3) BGCP, 4) BATF, and 5) HaLRTC, which also
have been used above. For the prediction tasks, we mainly
compare the proposed BTTF with BTRTF. Note that TRTF—
the tensor extension of TRMF—is not included as a baseline.
This is because the model has five regularization parameters
to tune, which is very challenging.
Experiment setup. Similar to the analyses on BTMF, we also
design two missing data scenarios: random missing (RM) by
randomly removing entries in the tensor and non-random
missing (NM) by randomly selecting certain amount of pick-
up×drop-off×day (or grid×grid×year) combinations and
for each of them removing the corresponding 24h block
(or 12-month block) entirely. We examine two missing rates
(40% and 60%) and use the last seven days (i.e., 7× 24 time
slots) and the last ten years (i.e., 10 × 12 time slots) as the
prediction periods for data (N) and (P), respectively. The
time horizons of each rolling prediction are set as {2, 4, 6}.
For tensor models, we use third-order tensor as input. The
low rank of all the tensor factorization models is set as
R = 30 for both imputation and prediction tasks.
Results and analysis. Table 3 gives the imputation per-
formance of all models on both two data sets. Essentially,
BTTF achieves competitive imputation results among these

5. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
6. http://iridl.ldeo.columbia.edu/SOURCES/.CAC/
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Fig. 6. Predicted metro passenger flow (red curves) of BTMF (time horizon: δ = 6) at 40% NM missing scenario vs. actual observations (black
curves) for data set (H). In these panels, white rectangles represent non-random missing (i.e., volume observations are lost in a whole day).
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Fig. 7. Predicted movement speed (red curves) of BTMF (time horizon: δ = 6) at 40% NM missing scenario vs. actual observations (black dots) for
data set (L). In these panels, white rectangles represent non-random missing (i.e., speed observations are lost in a whole day).

TABLE 3
Performance comparison (in MAPE/RMSE) for imputation tasks on data sets (N) and (P).

Data Missing BTTF BTRTF BPTF BGCP BATF HaLRTC

(N)
40%, RM 47.8/4.85 48.5/4.86 48.0/4.91 48.9/4.82 49.3/4.90 51.0/6.84
60%, RM 48.9/5.08 48.5/5.03 49.3/5.02 48.7/5.11 50.1/5.12 52.1/8.13
40%, NM 48.7/5.05 48.8/5.03 48.5/5.35 52.9/4.87 54.7/4.86 51.5/7.03

(P)
40%, RM 1.48/0.49 1.47/0.49 1.65/0.69 1.48/0.49 1.43/0.48 0.67/0.24
60%, RM 1.49/0.50 1.47/0.49 1.68/0.69 1.48/0.50 1.43/0.48 0.98/0.35
40%, NM 1.47/0.49 1.47/0.49 1.65/0.70 1.46/0.49 1.45/0.48 0.72/0.25

Best results are highlighted in bold fonts.

tensor-based models. For data set (N), BTTF and BTRTF
perform better than other models in most cases. For data set
(P), HaLRTC outperforms other models. A possible reason
is that data (P) demonstrates clear low-rank structure with
only a few dominating factors, which makes the nuclear
norm-based method more powerful. BTTF and BTRTF show
comparable performance on both data sets.

Table 4 shows the results of multi-step prediction by
using BTTF and BTRTF with certain rates of missing values.
As can be seen, BTTF performs much better than BTRTF on
the prediction tasks. Again, the result verifies the superiority
of the VAR prior in BTTF. To demonstrate the prediction
results of BTTF, we depict the actual and predicted values

for six selected demand time series in Fig. 8. As we can see,
the prediction results are quite good even after a full day of
missing data. To have a global overview, we plot two exam-
ples of passenger flow volumes at two time slots in Fig. 9.
The full demand matrix can be well predicted/reproduced
with the tensor representation. Taken together, these results
suggest that the temporal trend and overall flow rate are
well characterized by the proposed BTTF model, even in se-
vere missing conditions (e.g., predicted values in Fig. 8(b)).

7 CONCLUSION AND FUTURE WORK

In this paper we present a Bayesian Temporal Factorization
(BTF) framework by incorporating a VAR layer into tra-
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TABLE 4
Performance comparison (in MAPE/RMSE) for prediction tasks on data sets (N) and (P) with different time horizons.

Data Missing BTTF BTRTF

δ = 2 δ = 4 δ = 6 δ = 2 δ = 4 δ = 6

(N)

Original 53.9/5.10 54.7/5.18 56.2/5.25 50.7/5.47 50.9/5.72 50.3/5.94
40%, RM 48.2/5.95 53.7/5.33 56.1/5.40 48.5/6.47 50.7/5.75 50.9/5.92
60%, RM 48.9/6.73 53.0/5.43 55.3/5.46 49.3/7.28 50.6/5.95 51.0/6.16
40%, NM 48.1/6.15 54.9/5.32 54.8/5.36 48.6/6.30 50.4/5.88 50.1/6.12

(P)

Original 2.85/0.92 2.58/0.84 2.81/0.91 16.33/5.59 21.94/7.52 17.25/5.59
40%, RM 2.31/0.76 2.50/0.81 2.58/0.84 10.07/3.30 14.66/4.71 14.57/4.71
60%, RM 2.35/0.76 2.43/0.79 3.22/1.03 17.57/5.57 13.33/4.16 9.07/3.14
40%, NM 2.32/0.75 2.41/0.79 2.45/0.80 28.51/9.45 10.32/3.34 29.62/9.49

Best results are highlighted in bold fonts.

0 24 48 72 96 120 144 168
0

40

80

120

V
ol

um
e

(a) From zone 17 to zone 13.

0 24 48 72 96 120 144 168
0

15

30

45

60

V
ol

um
e

(b) From zone 17 to zone 21.

0 24 48 72 96 120 144 168
0

40
80

120
160

V
ol

um
e

(c) From zone 17 to zone 21.

0 24 48 72 96 120 144 168
0

50
100
150
200

V
ol

um
e

(d) From zone 17 to zone 27.

0 24 48 72 96 120 144 168
0

30

60

90

120

V
ol

um
e

(e) From zone 26 to zone 21.

0 24 48 72 96 120 144 168
0

50
100
150
200

V
ol

um
e

(f) From zone 27 to zone 27.

Fig. 8. Examples of six pick-up/drop-off pairs. We show the predicted time series using BTTF (time horizon: δ = 2) under 40% NM (red curves) and
the actual observations (blue curves). In these panels, white rectangles represent non-random missing.

1 3 5 7 9 11131517192123252729
Zone

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29

Zo
ne

0

40

80

120

160

200

V
ol

um
e

(a) Actual volume.

1 3 5 7 9 11131517192123252729
Zone

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29

Zo
ne

0

20

40

60

80

100

120

140

160

180

200

V
ol

um
e

(b) Predicted volume with original data.
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(c) Predicted volume with 40% NM data.
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(e) Predicted volume with original data.
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(f) Predicted volume with 40% NM data.

Fig. 9. Examples of passenger flow volume matrices at two time slots. We show the predicted volume using BTTF under the actual observations
and 40% NM data. Note that panels in the first row show the results during 8:00 a.m.—9:00 a.m. of June 27, and the second row corresponds to
the time interval of 9:00 a.m.—10:00 a.m. of June 27.
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ditional Bayesian probabilistic matrix/tensor factorization
algorithms. The integration allows us to better model the
complex temporal dynamics and covariance structure of
multidimensional time series data on the latent dimen-
sion. By diagnosing the coefficient matrices in VAR, one
can identify and interpret important causal relationships
among different temporal factors. Therefore, BTF provides
a powerful tool to handle incomplete/corrupted time series
data for both imputation and prediction tasks. In addition,
the Bayesian scheme allows us to estimate the posterior
distribution of target variables, which is critical to risk-
sensitive applications. For model inference, we derive an
efficient and scalable Gibbs sampling algorithm by intro-
ducing conjugate priors. The fully Bayesian treatment offers
additional flexibility in terms of parameter tuning while
avoiding overfitting issues. We examine the framework on
several real-world time series matrices/tensors, and BTF
framework has demonstrated superior performance over
other baseline models. Although we introduce BTF in a
spatiotemporal setting, the model can be readily applied on
general multidimensional time series data.

There are several directions to explore for future re-
search. First, we can extend this framework by including
a rank determination component, thus learning the number
of latent factors (i.e., rank) instead of defining it in advance
[33]. Second, we can extend this framework to account
for spatial dependencies/correlations by incorporating tools
such as spatial AR and Gaussian process structures. For
example, when spatial information is available, we can
place Gaussian process priors on the rows on W instead
of the independent Gaussian prior on each column [13],
[36]. Similarly, temporal factors can be also modeled as
Gaussian processes as an alternative to VAR [13], [28].
Third, the graphical model can be further enhanced by
accommodating exogenous variables and modeling other
distributions beyond Gaussian (e.g., Poisson data [7], [46]).
To overcome the impacts of outliers, the framework can
also be transformed to robust models for non-Gaussian
noise [31], [47]. We would like to integrate recent advances
in Bayesian particle filtering and deep learning to better
capture the complex and non-linear dynamics on temporal
latent factors (see, e.g., [48], [49], [50]).
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