
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4408  | https://doi.org/10.1038/s41598-021-83878-7

www.nature.com/scientificreports

Scaling of contact networks 
for epidemic spreading in urban 
transit systems
Xinwu Qian1, Lijun Sun2 & Satish V. Ukkusuri3*

Improved mobility not only contributes to more intensive human activities but also facilitates the 
spread of communicable disease, thus constituting a major threat to billions of urban commuters. In 
this study, we present a multi-city investigation of communicable diseases percolating among metro 
travelers. We use smart card data from three megacities in China to construct individual-level contact 
networks, based on which the spread of disease is modeled and studied. We observe that, though 
differing in urban forms, network layouts, and mobility patterns, the metro systems of the three 
cities share similar contact network structures. This motivates us to develop a universal generation 
model that captures the distributions of the number of contacts as well as the contact duration among 
individual travelers. This model explains how the structural properties of the metro contact network 
are associated with the risk level of communicable diseases. Our results highlight the vulnerability of 
urban mass transit systems during disease outbreaks and suggest important planning and operation 
strategies for mitigating the risk of communicable diseases.

The rapid growth of population and activity intensity in megacities have propelled an evolutional shift of urban 
mobility from individual-centric travel to sustainable urban mobility. This substantial shift concerns environ-
ment, energy consumption, equity, among  others1–4. Lying at heart for promoting sustainable travel is our under-
standing of the interplay among urban form, transportation system, and human mobility. Research across a 
diverse stream of studies and data sources have shown the scaling properties of individual  mobility5–8: the vast 
majority of people travel between a few popular locations and their travel distances are bounded by the scale of 
the city and its transportation systems.

One indispensable component of urban transportation is the mass transit system, which is so far the only sus-
tainable solution to serve urban mobility needs on a large scale. In 2018, public mass transit served over 53 billion 
passengers worldwide. The three busiest metro systems reached the daily ridership of 9.48 million (Tokyo), 6.49 
million (Moscow) and 5.6 million (Shanghai)9, respectively. While these systems allow a large number of com-
muters to travel efficiently, they also result in high population density within close proximity for long durations. 
These features establish an environment conducive to the spread of communicable  diseases10–12. In particular, 
pathogens of infectious travelers can migrate to adjacent travelers through droplets and airborne transmissions, 
resulting in secondary infections during travel. Public mass transit and the underlying travel patterns are becom-
ing an essential catalyst for influenza pandemics and may greatly accelerate the spreading pace of communicable 
diseases and thus increase the intensity of disease outbreaks in megacities. Despite acknowledging the linkage 
between human mobility and the spread of infectious  disease8,13–18, current models do not understand the nexus 
on how the structure of physical contacts/encounters among individuals—which in turn enable the transmission 
of communicable diseases—are affected by the interaction between human mobility and physical infrastructures.

An attractive approach to address the challenge is to construct the contact networks during travel and then 
embed the disease percolation process among individual travelers into the contact networks. Recent advances 
in complex network theories and epidemic modeling have established a striking connection between network 
structure and disease  dynamics19–24 and the epidemic spreading was modeled on various mobility scales includ-
ing airline  network17,25,26, ground transportation  network14,16 and river  network15,27. While mobility networks 
represent mediate channels for epidemic outbreaks, other studies focused on correlating disease dynamics with 
direct human interactions as contact networks at activity  locations12,22,28–30. More recently, the prevalence of indi-
vidual-level mobility data and disease record data with fine granularity also opens new opportunities for directly 
linking the observed dynamics of infectious diseases with the human mobility patterns of the corresponding 
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periods. For instance, the human mobility data was overlayed with insurance claims data to investigate the drives 
of seasonal  influenza31, track and predict the fate of the  dengue32, real-time prediction of Zika  outbreak33, and 
measure the effectiveness of control measures for the recent COVID-19  outbreak34–36. The availability of data also 
motivated initial attempts on exploring the risk of infectious diseases in public transportation systems, where 
the transit smart card data and passenger demand data are used to restore individual trip sequences, construct 
potential encounter networks among travelers and simulate the outbreaks of infectious diseases on the encounter 
 networks37–39. These studies connected the disease percolation process with either mobility networks or contact 
networks, and the data and the networks are mainly used to deliver descriptive and predictive analyses. How-
ever, such analyses are reactive and may not guide the development of proactive measures against the threat of 
infectious diseases. The linkage on how contact networks are generated as a function of human mobility and 
the transportation infrastructures is still missing. Meanwhile, such an interplay has significant implications 
on systematically keeping infectious people from engaging in daily activities and consequently stopping the 
epidemic from the source.

To close the gaps, this study aims to characterize how human mobility shapes contact networks during travel 
and how it subsequently affects the threshold of disease percolation among individual travelers. In previous 
studies, contact networks were either of high-resolution for small systems (e.g., at  conference28 and  school12,29) 
or of low-resolution for large systems by simulating from survey  data22,30. Here we construct high-resolution 
contact networks for city-wide transit systems by leveraging smart card data from three major cities in China: 
Guangzhou, Shanghai, and Shenzhen (see SI Appendix S1 for a detailed description of the data). We focus on 
the metro system, the most used public transit mode, to rebuild the contact networks among metro travelers, 
but the approach is broadly applicable to other transit systems. The three cities are of drastically different scales 
and distinct metro network layouts (Fig. 1A). Specifically, Shanghai has the largest population, metro system, 
and the highest metro passenger volume (over 4 million daily records), followed by Shenzhen (2.1 million) and 
Guangzhou (1.6 million). The metro ridership of the three cities presents highly regular and recurrent patterns 
during weekdays with prominent travel peaks (Fig. 1B), which implies a large number of daily commuters and 
repeated metro visits. The large-scale trip data, as the result of intensive daily activities in metro systems, allow 
us to directly probe the representative mobility patterns of metro travelers in these cities (see Fig. 1C). Despite 

Figure 1.  Summary characteristics of the travel pattern within the metro networks. (A) Spatial layout of the 
metro networks of the three cities (from left to right: Guangzhou, Shanghai, Shenzhen). The satellite images 
for the metro network layout were created using mplleaflet library in Python3, which can be accessed at https 
://githu b.com/jwass /mplle aflet . (B) Temporal distribution of metro ridership obtained from the smart card 
transaction data. (C) Probability density of function of metro trip duration T. We observe that the distributions 
metro trip duration of all three cities follow exponentially decaying tails ( p(T) ∝ e−T/� ). For Guangzhou, we 
find that trips with T > 50min can be well fitted with � = 13.78min . For Shanghai, trips with T > 50min can be 
well fitted with � = 16.59min . For Shenzhen, trips with T > 50min can be well fitted with � = 13.43min.

https://github.com/jwass/mplleaflet
https://github.com/jwass/mplleaflet
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distinct network layouts, size, and trip demand, the mobility patterns of the three cities are observed to be 
strikingly similar. We find that there is a large number of travelers with travel time under 50 minutes, and the 
number of travelers decays exponentially with increasing trip length. This finding holds true across all three 
cities, with Shanghai having a lower decay rate (16.59min) and the decay rates for Guangzhou (13.78min) and 
Shenzhen (13.43min) being almost identical. This indicates that trip lengths in metro systems are bounded by the 
size of the metro network, which reflects the scale of a city, and the results are also consistent with the reported 
metro mobility patterns in other  cities8,40. The finding also provides strong evidence to support the universality 
of human mobility within public transit, where the travel time follows the exponential distribution with the 
decay rate being proportional to the scale of the city. As physical encounters are driven by human mobility, this 
motivates us to investigate the possible existence of scaling laws for the contact patterns in public mass transit 
networks, as the results of the universal mobility patterns.

Results
Metro contact network. Smart card data only provide entry and exit information on a trip. To gain 
insights into how travelers come in contact with others during travel, we develop a simulation model based on 
the observed metro network layout, demand profile, and mobility patterns. The simulation constructs high-res-
olution metro contact networks (MCNs) by first sampling passenger arrivals at each metro station and their trip 
destinations, then calculating if two individuals will come into contact based on their trip profiles, and finally 
assigning expected contact duration between each pair of individuals (The detailed description of the simula-
tion is presented in Methods). The inputs to the simulation are the number of travelers (N), the time period of 
interest, the operational timetable and the metro network layout. The simulation then produces a N × N matrix 
describing the physical contact pattern between each pair of individual travelers. In particular, each positive 
entry of the matrix denotes the expected contact duration between two travelers within effective transmission 
range, e.g., two individuals are of close proximity so that the airborne transmission of a communicable disease is 
likely. For typical droplet transmission, the effective range is less than 3 feet while certain diseases such as SARS 
may reach 6  feet41.

We then visualize the structure of the MCNs by simulating a sample realization for each of the cities during 
8–8:30 AM, and we set the number of travelers to 500 for better visibility of the network structure (Fig. 2A–C). We 
observe that the MCNs are visually different among the cities, which is due to the differences in metro network 
layouts. But these MCNs also share several structural commonalities, including local clusters of nodes and the 
discrepancies of node degree.

To gain a better understanding of their structural properties, for each city, we further generated MCNs from 
500 to 104 nodes and the changes in structural properties with increasing network size are summarized in SI 
Appendix S2.1. We observe that there are fewer hubs in the MCNs as opposed to the scale-free networks. Instead, 
there are a large number of nodes with low to medium degree. We further confirm the structural similarities 
of the MCNs among the three cities by different quantitative metrics, as shown in Table 1. All the MCNs are 

I

Figure 2.  Simulated MCNs with 500 nodes and the unweighted and weighted degree distributions of simulated 
MCNs with 1000 nodes. (A)–(C) visualizes the layouts of the simulated MCNs in Guangzhou, Shanghai and 
Shenzhen. In the visualization, larger node size reflects higher node degree and the transparency of the link 
is proportional to the duration of contact. (D), (F) and (H) present the probability density function of the 
unweighted degree distributions of Guangzhou, Shanghai and Shenzhen. (E), (G) and (I) present the probability 
density function of weighted degree distributions of Guangzhou, Shanghai and Shenzhen.
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observed to have high node degree heterogeneity and high clustering coefficient, and have small network diam-
eter and characteristic path length (CPL). These properties are statistically different from the metrics of their ran-
dom counterparts (see SI Appendix S2.2), which corroborates the distinct structural properties associated with 
MCNs. These confirm that MCNs are a type of small-world  network42, and this observation leads to significant 
implications in the context of disease percolation. Specifically, the outbreak of an exceedingly infectious disease 
may quickly synchronize among all the travelers because of the small-world property, and therefore the metro 
system becomes highly vulnerable. But unlike many real-world networks, we report that several network met-
rics (e.g., clustering coefficient, diameter and assortativity) are invariant to the size of the MCNs (Table S3–S5). 
Instead, they are determined by the metro network layout and human mobility patterns. In this regard, MCNs, 
like many other real-world contact networks in school, conference sites and major activity locations, should be 
regarded and studied as the product of the interactions between human mobility and physical infrastructure.

By plotting the degree distributions of the number of contacts and contact duration for metro travelers 
(Fig. 2D–I), we find an even more remarkable similarity among the MCNs. Despite the differences in metro 
network layouts, visualizations and statistics of the simulated MCNs, the degree distributions are found to fol-
low a similar distribution across the three cities, and such observation is also valid for different time periods of 
the day. In particular, the unweighted degree distributions of the MCNs show a large number of nodes of low 
to medium degrees (e.g., degree smaller than 50) and the node degrees within this range are found to be nearly 
uniformly distributed. But with an increasing number of contacts and length of contact duration, the tails of 
the node degree distributions are found to decay exponentially, similar to the observations for metro mobility 
patterns. In addition, the rates of decay are found to be time-dependent and also differ among the cities. We also 
find that, in all three cities, both unweighted and weighted degree distributions during morning peak hours (7 
AM and 8 AM) are slightly different from those in other time periods. This can be understood from the mobility 
patterns of the metro travelers during the time, where morning commuters are more likely to travel in the same 
direction (e.g., from home to work), thus increasing the number of contacts and the contact duration. Such an 
observation is later confirmed in our generation model, where morning commuters present a higher degree of 
similarity in terms of their trip patterns. These observations lead to the conjecture of a universal mechanism 
underlying the contact of metro travelers, and we explore the mechanism in more depth in the following sections.

Disease dynamics in contact network. With reconstructed contact networks, the risk of communi-
cable diseases can be quantified by modeling the dynamics of disease percolation among individual travelers. 
We introduce an individual-based model (IBM)  following43. To characterize disease dynamics within the con-
tact network, the classical susceptible-infectious-susceptible (SIS) process is embedded in the IBM over MCNs. 
Unlike previous  studies19,22, this framework does not require nodes and transmission between nodes to be 
homogeneous, which allows us to model heterogeneous infectious rates due to the varying contact duration. 
Denote the probability that node i is infected at time t as pi,t and the recovery rate as r, we have

where qi,t represents the probability that node i is in S at time t, which depends on that all its neighbors j ∈ N (i) 
are either in S or in I but fail the transmission:

In the equation, βi,j = βti,j represents the transmission rate between node i and j, which takes the product of per 
unit time disease transmission strength β and the contact duration ti,j . With N such nodes, we arrive at a nonlin-
ear dynamic system (see SI Appendix S3.2) with two equilibrium states: (1) the disease-free equilibrium (DFE) 
where all individuals are in S state (e.g., pi,t = 0 ) and (2) the endemic equilibrium where a positive proportion 
of individuals are in I state. The asymptotic stability of the DFE relies on the network-specific critical threshold 
δ that is associated with the largest eigenvalue of the adjacency matrix of MCNs. And we show that the critical 
threshold is upper bounded by the largest node degree in MCNs as:

As a consequence, if δ̄ < 1 , the disease is guaranteed to go extinct while the disease may be endemic with δ̄ > 1 . 
Since β and r are endogenous parameters, the risk level that pertains to a specific disease primarily depends on 

(1)pi,t = 1+ pi,t−1(qi,t − r)− qi,t , ∀ i ∈ V

(2)qi,t =
∏

j∈N (i)

(1− pj,t + (1− βi,j)pj,t)

(3)δ ≤ max
i

∑

j

βi,j − r + 1 = δ̄

Table 1.  Summary statistics of the generated MCNs with 1000 nodes. The MCNS correspond to the travel 
pattern during 8–8:30 AM on weekdays, and the statistics are measured using unweighted MCNs. Results are 
averaged from 10 random realizations.

〈k〉 Clustering coefficient Diameter CPL

Guangzhou 35.09 0.49 7.2 2.79

Shanghai 29.14 0.46 7.6 2.89

Shenzhen 41.59 0.54 6 2.78
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the value of maxi
∑

j βi,j . Such finding subsequently builds the essential connection between the vulnerability of 
public mass transit with the degree distribution of its contact networks and identifies the impact of the structural 
property of MCNs on disease threshold in transit systems. The observation provides two immediate implications. 
First, we can verify that the risk level of an MCN is driven by the riskiest individual who has the highest num-
ber of contacts or contact duration, which concerns the tail pattern of MCNs unweighted and weighted degree 
distributions. Second, by removing the riskiest individual, the next riskiest person may have a similar risk level 
according to the revealed degree distributions (Fig. 2D–I). This highlights the difficulties in improving MCN’s 
vulnerability and stopping the disease during outbreaks.

In addition to the IBM model, we also build an equivalent OD-based mean-field (ODMF) approach that 
models the disease dynamics on the passenger flow level between each pair of metro stations (SI Appendix S4). 
Note IBM is computationally expensive due to the construction of MCNs, and the ODMF can be used to approxi-
mately probe the system-wide disease dynamics for the real number of metro travelers.

Disease control strategies. The best practice for controlling the disease is to immunize travelers through 
vaccination and  quarantine44. We next explore the effectiveness of five immunization strategies with the percent-
age of individuals immunized as a control parameter. Origin-Destination pairs (OD) based and station-based 
approaches represent population control that immunizes a portion of travelers commuting between a pair of 
stations or originating from a station. These two control strategies are motivated by the observation that fewer 
than 20% of the stations produce over 80% of travel demand (Fig. 3A), and more than 80% of the metro com-
muters are associated with fewer than 20% of station pairs(Fig.  3B). These findings suggest that population 
control may yield satisfactory results in reducing the risk level by focusing on populated stations and trip pairs, 
as these travelers are likely to have more number of contacts. On the other hand, we also consider uniform, 
targeted and distance based approaches that are individual-centered methods. The uniform strategy immunizes 
randomly selected travelers, the targeted strategy iteratively removes travelers of the longest contact duration, 
and the distance-based strategy aims at immunizing travelers of the longest travel time. Specifically, the targeted 
method is reported to be most effective in the complex network  literature19,21. The effectiveness of these control 
strategies is then examined based on the relative risk level (RRL), which measures the reduction in maxi

∑

j βi,j 
with an increasing number of immunized travelers.

Our results suggest that the most effective method is the targeted immunization followed by the distance-
based method and the OD based method. All three are superior to the uniform immunization. This finding is 
consistent across the three cities (Fig. 3C–E). For the targeted immunization, we observe a 27% reduction in 
RRL by immunizing the top 1% riskiest individuals, and a 60% reduction in RRL can be achieved by removing 

Figure 3.  Distribution of travel demand and the effectiveness of different control strategies for the MCNs 
of the three cities. (A) presents the probability density function of the trip demand at the station level. (B) 
presents the probability density function of the trip demand of each pair of stations. (C), (D) and (E) visualize 
the effectiveness of OD based, targeted, uniform, distance based and station based control strategies for each 
city. The effectiveness of control strategies is compared with the proportion of trip demand affected by the 
corresponding strategy.
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the top 10% riskiest travelers. On the other hand, the station based method is found to be less effective than 
the uniform policy in two of the three cities. The primary reason is that populated stations may not be origins 
of travelers with a high number of contacts and contact duration. Unfortunately, it is usually impracticable to 
identify the risk level of a traveler before the trip, which is the major barrier for the implementation of targeted 
immunization. As effective alternatives, we may introduce the distance-based and OD-based strategies by track-
ing the historical trips of an individual from her smart card. The most practical control strategies are the station 
based and uniform strategies, but neither is shown to be effective enough. These results highlight the challenges 
for stopping the spread of the disease in transit systems. It is therefore important to devise better strategies for 
the operation of metro systems andimporve the structure of the metro networks.

A generation model for MCNs. Here we develop and validate a simple generation model for MCNs. 
The MCN to be generated is a scale-dependent network where the degree distribution is a function of the total 
number of travelers in the network. We observe that the travelers’ mobility patterns follow the exponential dis-
tribution while the contact degree distributions also decay exponentially. Following our discussion on the MCN 
structure, we hypothesize that (1) contacts are driven by travelers’ mobility patterns, and (2) the probability of 
two travelers getting into contact is bounded by their mobility in the metro network and also the layout of the 
metro network. We focus on investigating a universal generation model with individuals’ mobility pattern as 
the input and we consider that the number of contacts is proportional to the total travel time ti of each traveler. 
Recall that the degree distribution is found to vary across time and city. We thereafter introduce two variables: α 
captures the impact from metro network layout and γt models the temporal characteristics of travelers’ mobility. 
We consider the expected total number of contacts experienced by N travelers as:

Equation 4 accounts for the scale-dependent nature by including N on the right-hand side and αtγti  determines 
the rate that a commuter of travel time ti will meet other N − 1 travelers in the system. And tγti  refers to the 
rescaled travel time which depends on the temporal trip similarity among travelers. This is motivated by the 
fact that different times of day will result in riders heading to various destinations and γt therefore measures 
how similar their destinations are. Consider M = 2C as the total number of stubs (half-edges) in MCNs, we 
can derive the probability that a node is of degree k as (see SI Appendix S5 for derivation details and Fig. S8 on 
empirical evidence that supports M):

with wi = 2αt
γt
i (N − 1)/M being the probability that a randomly selected stub is attached to node i. Given the 

PDF in Eq. (5), the MCNs can then be generated following the configuration model by first sampling the degree 
sequence K = {k1, k2, ..., kN } from p(k), then randomly selecting and connecting a pair of stubs until all stubs are 
exhausted. For each pair of matched stubs between node i and j, we further assign the weight dij ∝ min(t

γt
i , t

γt
j ) 

as the edge weight and obtain the weighted degree distribution.
To calibrate α and γt , we perform cross-validation to determine the optimal α for each city and the cor-

responding γt at each time interval, with the objective to minimize the Kolmogorov–Smirnov (KS) statistics 
between the CDFs of the generated and simulated MCNs for both unweighted and weighted degree distributions 
(see SI Appendix S5.1). To validate the correctness of the generation model, we conduct two-sample KS tests to 
compare the CDFs of unweighted and weighted degree distributions between generated and simulated MCNs. 
The null hypothesis is that the two data samples for comparison are drawn from the same continuous distribution.

The validation results are summarized in Table 2, and we also visualize the fitting of the generated MCNs in 
Fig. 4. We observe that for all experiments, we fail to reject the null hypothesis for the two-sample KS test with 
the lowest p-value among these cases being 0.742. Even this lowest value is way above the significant threshold 
for rejecting the null hypothesis (0.05), and in most cases, the p value is greater than 0.95 for both weighted and 
unweighted distributions. The statistics along with the goodness of fit in Fig. 4 are indicative that the proposed 
generation function well captures the underlying mechanisms that govern the meetings of passengers and the 
duration of exposures during their travels in metro systems. More importantly, the validation of the generation 
model in three cities provides strong evidence for the existence of a universal rule that shapes the contacts among 
travelers in transit networks.

Discussion
By inspecting the structure of those simulated MCNs, we observe that there is a lack of high degree nodes. This 
observation is confirmed by the generation model, which can be decomposed as the weighted combination of 
Poisson PDFs as shown in Eq. (5). We see that the degree of a node may be drawn from a collection of Poisson 
distributions with mean Mwi . This explains the lack of high degree nodes in the contact network as compared 
to the scale-free network with the same number of nodes and average degree, since the probability of having 
large k in a random network diminishes faster than exponential. On the other hand, the generation model also 
explains why the tails of the degree distributions of MCNs decay slower than a random network. Note that in 
MCNs, high degree nodes are generated from the Poisson distribution with a large Mwi value, which requires a 
longer trip length ti . The decay of the tails is therefore the convolution of the tail of a random network and the 
tail of the mobility distribution which decays exponentially. In addition, we derive the expressions for the mean 

(4)C =

N
∑

i

αt
γt
i (N − 1)

(5)p(k) =

N
∑

i=1

(Mwi)
ke−Mwi

k!
p(ti)
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〈k〉 and variance ( σ 2
= �k2� − �k�2 ) of the MCNs’ degree distributions in SI Appendix S6. We find that �k� ∝ N 

and the variance σ 2
∝ N2 , so that both measures diverge with N → ∞ and the variance is of higher magnitude 

than the average node degree. This indicates that the degree distributions of MCNs have similar characteristics 
as compared to the exponential distribution and the number of contacts and the contact duration are bounded 
by the human mobility in the transit networks. Moreover, these findings are aligned with the empirical obser-
vations of 〈k〉 and 〈k2〉 in simulated MCNs (Fig. S6), which further strengthens the validity of the developed 
generation mechanism.

One important parameter in the generation model is γt , where we define γt as the similarity among the trips. 
To validate this argument, we also quantitatively measure the trip similarity (see SI Appendix S5.2) among travel-
ers based on the trip OD matrix Q. The similarity measure is introduced to quantify the strength of overlapping 
of a particular trip pair on other trip pairs in terms of contact duration and demand level. We then compare the 
dominant eigenvalues of Q and we use the variance of the dominant eigenvalues to quantify the similarity of trip 
purposes. In particular, a higher variance suggests that most trips are distributed across a few ODs and the trip 
purposes among these riders are more similar. We compare the computed similarity index with the calibrated 
γt and the results are shown in Fig. 5. We see that the calculated similarity presents a strong linear relationship 
with γt among all three cities, with R2 value being above 0.77 if we fit a simple linear function to interpret this 
relationship. These suggest that similarity can be used as a proxy for γt for prediction purposes.

While it is difficult to devise effective yet practical control strategies, the degree distribution provides valuable 
insights in improving the resilience of the transit system by controlling how its contact networks are shaped. To 
reduce the risk of MCNs, it is equivalent to minimize the probability of the MCNs having high degree nodes. 
Based on Eq. (5), we know that p(k) is linearly proportional to the number of passengers and the scale of the 
metro network. Reducing these values will lead to a linear reduction in the average number of contacts while the 
shape of the degree distribution will remain the same. By observing the metro network layouts, we observe that 
a larger transit network, possibly with more number of lines and transfer stations, may result in lower α . But the 
data used in our study is not sufficient to explain how we may reduce α and this may require further investigation. 
Alternatively, efforts can be made to reduce γt so as to sub-linearly decrease the probability of having high degree 
nodes and result in the degree distribution that decays faster. This can be achieved by segregating passengers 
through an optimally designed timetable or advising passengers to distribute their departure time. The ultimate 

Figure 4.  Visualization for the goodness of fit of the generated MCNs as compared to the simulated MCNs 
from the smart card data. Each row corresponds to the results of the same city and each column corresponds 
to the results from a particular time of the day. (A) Fitting results of the probability density function for the 
unweighted degree distributions. (B) Fitting results of the probability density function for the weighted degree 
distributions. All results are obtained from the average performance of 50 generated MCNs using the optimal 
γt and from the average of 50 simulated MCNs. Each MCN has 1000 nodes. All scenarios fail to reject the null 
hypothesis of the KS test with very high p-values, where the summary statistics of the KS test and calibrated 
model parameters are shown in Table 2.
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solution, however, lies in the distribution of the human mobility distribution for ti . This will not only reshape 
how the Poisson PDFs are combined but also change the weight of each Poisson distribution. In particular, we 
would like to pursue the distributions of ti with faster decaying tails, so that both Mwi and p(wi) for larger wi 
values will be minimized at the same time. And this can be realized by changing the layout of the metro network 
or, ultimately, the urban form itself. We can expect that wi will decay faster by reducing the number of transfers 
required for the pair of stations of long trip duration, which results in lower maximum trip length and may also 
contribute to lowering α . As for the urban form, a more decentralized urban structure is the most effective way 
for reducing the risk of communicable diseases, which implies that people can avoid long distance travels across 
the city as they can find work or entertainment places closer to their home locations. While both approaches 
are deemed to be effective, the design of the metro network and urban form is not a sole function of the risk 
of communicable disease. Thus oftentimes we have to compromise among the disease risk, construction cost, 
efficiency, and also equity of urban mobility. But the developed model in this study provides an important tool 
for improving the network resilience without undermining other aspects of the system.

One final issue is to identify the group of travelers who experience and introduce high-risk exposure in the 
transit system. To gain insights on this issue, the correlations among the travel time distributions and distribu-
tions of contact durations are plotted and shown in Fig. 6. We see that the travel time and the contact duration 
are positively correlated and this observation is consistent across all three cities. We can also verify that there is a 
wide range of travel time for travelers who experience high contact duration in the metro system. In general, the 
positive correlation suggests that travelers who experience the highest contact duration are likely to be those who 
have the longest travel time. And the travel time of urban commuters is closely related to their work and home 
locations, their income levels, and eventually their lifestyle and health conditions. One recent study reported 
that those commuters with the longest travel time in the metro are likely to be low-income migrates, and they 
may change their home and work locations more frequently than other urban  commuters45. This finding implies 
another potential risk in transit networks. If commuters with long travel time overlap with the low-income popu-
lation, then these people are likely to be more prone to infection during disease outbreaks. Compared to other 
population groups, low-income people usually have fewer options (such as time off and sick leaves) and may 
pay less attention to personal health and hygiene due to limited disposable  income46. Consequently, the riskiest 

Figure 5.  Comparison between the calibrated parameter γt and trip similarity index for (A) Guangzhou, (B) 
Shanghai and (C) Shenzhen.

Table 2.  Summary of fitted results and model parameters from KS test for three cities.

Time 8 AM 12 PM 6 PM

Guangzhou

Unweighted p 0.742 0.742 0.742

Weighted p 0.999 0.999 0.999

γt 0.652 0.604 0.610

α 0.005

Shanghai

Unweighted p 0.956 0.998 0.956

Weighted p 0.999 0.999 0.998

γt 0.634 0.604 0.616

α 0.004

Shenzhen

Unweighted p 0.956 0.999 0.999

Weighted p 0.999 0.999 0.999

γt 0.662 0.612 0.626

α 0.005
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group of travelers in metro systems are likely to be the most susceptible and vulnerable group of people during 
the disease outbreak. And this may inevitably raise additional challenges associated with disease contagion and 
equity of travel in urban transportation networks.

Methods
Unweighted metro contact network. Based on the smart card transaction data and operation data for 
metro networks, we next develop the algorithm for constructing the MCN. The contact network is constructed 
at the individual level and we consider both unweighted and weighted contact networks. For unweighted MCN, 
each node represents a traveler and the link between a pair of nodes denotes that the two travelers will have posi-
tive probability to be on the same metro train. Since the smart card data only contain the time and location of a 
traveler entering and leaving the metro system, we need to infer if two travelers will be on the same metro train 
based on their trip starting time, origin station and destination station. And this further requires us to predict 
their travel route within the metro system. While the operation timetable of metro system is largely reliable, we 
assume that all travelers will follow the shortest route between two trip origin and destination (including both 
station-wise travel time and transfer time). Based on the predicted travel route, we can therefore determine if a 
link exists between two travelers following 

1. Find the shortest travel route Pi for each traveler.
2. For each pair of passenger i and j, determine if they have overlapping travel segments Lij.
3. If |Lij| ≥ 2 , determine their first meeting location, station m, and calculate their arrival time at the meeting 

station ti,m, tj,m respectively.
4. Compute the probability of contact between travelers i and j based on ti,m, tj,m and the frequency f of metro 

lines.
5. Repeat this process until all pairs of travelers are processed. Output G.

In step 1, the shortest route can be computed using the Dijkstra  algorithm47 with the travel time adjacency 
matrix Ŵ , and the shortest routes are stored as sequences of the stations Pi = {s1, s2, .., sP} along the routes. In 
steps 2 and 3, the overlapping travel segments of two travelers i and j can be identified as the longest common 
subsequence (LCS) of their routes pi and pj . In our case, a valid LCS that may grant contact is the LCS of length 
2 or higher, indicating that the two travelers share at least one trip segment. In step 4, ti,m, tj,m can be computed 
from their departure time and the trip time between their origin station and first meeting station m. Then their 
contact probability pij follows

This suggests that two travelers will have positive contact probability if the gap between their arrival time at 
m is less than the headway 1f  of metro trains. And this probability decreases linearly considering the uniform 
arrival of metro trains following frequency f. Following Eq. (6), a link will exist in the unweighted MCN if and 
only if pij > 0.

Weighted metro contact network. Based on unweighted MCNs, we further assign the weight to each 
link in unweighted MCNs to produce weighted MCNs. In the context of modeling the spread of communicable 
diseases, the weight on each link has the physical meaning as the expected contact duration between two individu-
als within effective transmission range. By effective transmission range, we consider that two individuals are close 
enough so that the airborne transmission of a communicable disease is feasible. This follows from the definition 

(6)pij =







1−
|ti,m−tj,m|

1

f

, if |ti,m − tj,m| <
1

f

0, if |ti,m − tj,m| >=
1

f

Figure 6.  The correlations between travel time and total contagion duration in MCNs of three cities. 50 MCNs 
are generated for each plot using data from 8:00 to 8:30 AM, with each MCN having 1000 nodes. (A)–(C) 
represent results for Guangzhou, Shanghai, and Shenzhen, respectively.
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of the effective range for droplet transmission, which is usually less than 3 feet while certain diseases such as 
SARS may reach 6  feet41. Let Z denote the scaling parameter for the effective transmission range, we have the 
weight between traveler i and j as:

Considering that a metro train consists of 6 coaches, with each coach of length 72 feet, then Z may take the value 
of 144 if the effective transmission range is 3 feet. And Eq. (7) characterizes the expected contact duration as the 
product of the probability for being in effective transmission range pij/Z and the duration of the contact Lij , with 
the underlying assumption that travelers will uniformly distribute themselves among all metro coaches. The use of 
Z naturally captures the behavior of travelers to avoid congested coaches during travel. With an increasing num-
ber of travelers (e.g., more number of nodes in MCNs), this also characterizes the linearly increasing chance of 
close contacts, where the total contact duration of each individual is the row sum of the contact duration matrix.

Finally, for the transmission rate of communicable disease, let β denote the transmission strength per unit 
time, we have the transmission rate between two travelers as:

With the above processes, we can use the smart card data to generate sample unweigted and weighted MCNs. 
Specifically, the smart card data can be aggregated to generate the distributions for trip origin and destinations 
and the arrival time at each station. We then sample N travelers following the distributions, where each traveler 
has their time of arrival, the origin station and the destination station. And the MCNs with N nodes can conse-
quently be constructed following the generation process for MCNs. We denote A as the adjacency matrix of the 
generated MCNs, with each entry Aij = dij.

Ethical statement. The anonymous smart card transaction data is obtained from collaborations in China 
with our partners and all required permissions were obtained by them for research use. The data that is used in 
this research does not identify any human subjects and does not provide any identifiers of individual specific 
information, and is therefore exempt from any IRB approvals. All authors of the paper had no access to identify-
ing information when analysing the data. In addition, the study is not part of any funded project and permission 
from the funding agencies is not required.

Data usage. The usage of the metro smart card transaction data in this study are permitted by Guangzhou 
Metro, Shanghai Metro and Shenzhen Metro.
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