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Diagnosing Spatiotemporal Traffic Anomalies With
Low-Rank Tensor Autoregression

Xudong Wang , Student Member, IEEE, and Lijun Sun

Abstract— Traffic data collected from sensor networks often
exhibit strong spatial correlations and recurrent temporal pat-
terns. Learning these patterns and diagnosing anomalies in such
spatiotemporal traffic data is critical to improving transportation
systems and services. This paper proposes a dynamic framework
to model spatiotemporal traffic data, with a particular application
on diagnosing anomalies. Within the framework, we focus on
characterizing the variation in system dynamics with a time-
varying vector autoregressive model. We impose a low-rank
tensor structure to model the collection of time-varying system
matrices. As the temporal factor matrix captures the principal
patterns/signatures across all time-varying system matrices, it is
a useful tool to diagnose abnormal generative mechanisms and
unexpected temporal patterns. We demonstrate the proposed
tensor learning framework’s effectiveness by experimenting with
a synthetic data set and real-world spatiotemporal traffic speed
data set. The results show the superiority of the proposed model
in uncovering anomalous traffic network dynamics.

Index Terms— Spatiotemporal traffic data, anomaly detection,
tensor learning.

I. INTRODUCTION

W ITH recent advances in information and communica-
tion technologies (ICT) and sensor networks, large-

scale spatiotemporal traffic data sets—such as time series of
traffic speed and volume collected from different detectors in
a network—are becoming ubiquitous. These data sets encode
essential information about traffic conditions and often show
strong spatiotemporal structures and dependencies on urban
traffic’s inherent patterns. For example, traffic speed data
gathered from multiple loop detectors on an arterial/highway
can reflect the real-time traffic states (congestion or not) and
exhibit salient recurrent day-to-day temporal patterns and spa-
tial correlations between adjacent upstream and downstream
observations [1]. How to extract valuable information from
the massive spatiotemporal data set remains a challenging
problem.

One fundamental task of modeling spatiotemporal traf-
fic data is anomaly detection [2]. The purpose of anom-
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aly detection is to identify and diagnose abrupt changes in
transportation systems caused by incidents and system fail-
ures and provide proper and reliable decision-making accord-
ingly [1]. In general, there are two significant ways to detect
anomaly: offline anomaly detection and online anomaly detec-
tion [3]. Essentially, offline fashion analyzes full historical
data to learn and diagnose abrupt changes and non-recurrent
patterns in traffic conditions/dynamics. The results can be
used to identify systematic issues in network design and
operation. On the other hand, an online framework focuses
on detecting anomalies from real-time traffic state time-series
data, providing early-warning before large operational issues
happen. In this paper, we focus on the offline diagnosing
framework with the entire data set in Section V and discuss the
expanded online manner of the proposed method in Section VI.

As pointed out in [4], the key in detecting anomaly is to
build an appropriate time series model to characterize the
inherent spatiotemporal patterns, dependencies, and the gener-
ative mechanism of urban traffic data. There are two challenges
in practice. The first challenge is finding a way to set a
global anomaly definition and measure anomaly’s effect from
the complex spatiotemporal dependencies. In other words,
the definition of anomaly may vary depending on the time in
a day, day of the week, or locations. The situation would be
more complicated with hundreds/thousands of sensors. So it is
elusive to detect anomaly directly from original data. The sec-
ond is the scalability issue since traffic data is large-scale
multivariate time-series. Although one can build univariate
modeling frameworks (i.e., analyzing the time series from each
sensor individually), this approach essentially overlooks the
shared spatiotemporal traffic information. It becomes ineffi-
cient and even unreliable anomaly detection, given the coupled
relations and strong dependencies among different sensors.

To tackle these two challenges, we develop an anom-
aly detection framework—low-rank dynamic tensor learning
(LRDTL)—focusing on identifying anomalous dynamics in
spatiotemporal traffic data in this paper. The dynamics reflect
the transportation system’s inherent generative mechanisms,
which depicts a smoother variation in temporal space. Namely,
the transportation system dynamics are relatively more stable
in continuous time compared with original data. Therefore,
the variation of dynamics becomes more prominent, and it
is easier to locate the anomaly. A low-rank framework can
significantly reduce the number of parameters in the model.
Also, the model can include the spatiotemporal correlations of
traffic data by adding regularizers.
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The main idea of the proposed LRDTL is to model the
multivariate traffic state time-series data as a time-varying
vector autoregressive model: xt+1 ≈ At xt (t = 1, . . . , T −1),
where xt ∈ R

N is the observation at time t from N traffic
sensors. We assume that the system matrices At (N × N)
exhibit strong consistency in normal conditions over time, and
thus we define anomalous dynamics as abrupt changes in
At comparing with that in adjacent time instances. In order
to model the consistency of system dynamics, we follow [5]
to organize the time-varying system matrices as a third-order
(i.e., N×N×(T−1)) tensor A and impose a low-rank assump-
tion on A. In other words, the system coefficient matrices
have certain base patterns/signatures, from which anomalous
dynamics can be detected. Specifically, we use a low-rank
CANDECOMP/PARAFAC (CP) structure to characterize the
base patterns and formulate our framework as a tensor learning
problem [5], [6]. We insert an additional temporal smoothing
regularizer to avoid overfitting and eliminate minor anomalies
caused by the strong noise in traffic data. Because there is
no anomaly label of traffic data, we conduct an experimental
analysis on synthetic data set at first to verify the effective-
ness of this framework. Then the framework is applied to a
4-week traffic speed data set collected from the highways of
Seattle, US.

The remainder of this paper is organized as follows.
In Section II, we review some relevant literature on anom-
aly detection in multivariate time series data, especially
factorization-based models. The temporal matrix factorization
method is introduced in Section III. In Section IV, we intro-
duce the LRDTL model and present an alternative projec-
tion method for model parameters inference. In Section V,
we present two case studies to evaluate the proposed method.
Section VI concludes this study and discusses some directions
for future research.

II. RELATED WORK

The commonly used models to detect anomaly and change-
points are time-varying autoregressive (TVAR) [7], [8] and
switching Kalman filtering/smoothing (SKF/SKS) [9]–[11],
which are both built on traditional dynamic linear models
(DLMs). However, as the number of sensors increases, scala-
bility becomes a critical issue in traditional DLMs, a critical
challenge for large systems.

One efficient method to address the large-scale problem
is dimensionality reduction. For example, low-rank models
such as principle component analysis (PCA) and matrix/tensor
factorization (MF/TF) have been applied to model large-scale
spatiotemporal data these years (see, e.g., [1], [12]–[16]).
Essentially, these factorization-based models project the orig-
inal spatiotemporal data into a low-dimensional latent space,
in which the expected data with better spatial and temporal
consistency can be recovered. The “denoised” factors of sub-
space can be used to define certain anomaly score functions
(e.g., quantifying the deviation in the latent space over time).
Based on the anomaly score, the anomalous data generated by
some events, like an accident or bad weather, can be identified

by examining the latent factors. For example, Yang et al. [1]
proposed a Bayesian PCA model to capture both normal
traffic patterns and anomalies in an integrated framework.
Tonnelier et al. [17] applied matrix factorization to reveal
meaningful latent passenger demand patterns shared across
train stations and defined anomalous score on temporal
demand data by these patterns. As an extension of traditional
matrix-based time series model, Xu et al. [18] proposed a
sliding-window tensor factorization scheme to detect anom-
alies. In the work of [19], the authors combined traffic flow
tensor and topology tensor to address the problem of event
anomaly detection. ACS-Tucker decomposes the hybrid model
to factor matrices, on which using statistical tests to detect
anomalies. Wang et al. [20] expanded the traditional Tucker
decomposition in a probabilistic manner to detect abnormal
activity behaviors.

The factorization-based models provide us with a powerful
data-driven tool to identify abnormal traffic observations
(anomalous data) over time. However, as the traditional
factorization model is invariant to the permutation of
timestamps [14], it ignores the strong temporal dynam-
ics/dependencies in urban traffic data. As a result, this model
may overfit the noise in the data, which undermines our ability
to detect meaningful anomalies. To address this issue, addi-
tional temporal regularizers have been introduced into time-
series factorization models. For example, the most commonly
used temporal regularizer assumes the adjacent time slots are
similar by adding a Toeplitz matrix, in which the central
diagonal given by ones, and the first upper diagonal given by
negative ones [21]. Chen et al. proposed a temporal regularizer
by considering the past several temporal points with the
forgetting factor [22]. The work of [14] and [23] empowered
factorization-based models in terms of prediction capability
by integrating vector autoregressive (VAR) to characterize
generative temporal dynamics. The temporal regularizers are
very effective in eliminating insignificant changes caused by
the intense noise in traffic data. In addition to the overfitting
problem, there remains another issue: these factorization-
based models can only characterize abrupt changes in the
observations, while they cannot capture the abrupt changes
in temporal dynamics/dependencies. To this end, the work of
[6], [24] and [5] recently proposed time-varying autoregressive
models for multivariate time series. In short, these models
first increase their capacity in modeling temporal dynamics
with a time-varying VAR framework and then efficiently
learn the system tensor (the collection of time-varying coeffi-
cient matrices) with a parsimonious approach such as tensor
regression.

Inspired by these works, we develop a new anomaly detec-
tion framework for urban transportation data in this paper.
We follow the work of [5] in their approach to applying the
time-varying VAR model. However, instead of assuming the
system state is unchanged in a L-length time window, we focus
on each time stamp’s system matrix to detect dynamic system
anomaly more precisely. In short, the goal of this framework
is to detect anomalies in system dynamics instead of that in
observations based on a tensor learning framework.
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III. TEMPORAL MATRIX FACTORIZATION MODEL

We denote by X ∈ R
N×T the multivariate time series

(i.e., spatiotemporal traffic data) collected from N sensors over
T timestamps and xt ∈ R

N the column vector of X at time
step t . The temporal matrix factorization model is a powerful
tool to detect anomalies by comparing the distance between
observations and estimations. An anomaly occurs when the
observation is far away from its expected value produced by
the factorization model. Essentially, the model estimates two
latent factor matrices U ∈ R

N×R and W ∈ R
T×R that can

recover the original data with X̂ = U W�, where R is the
rank of the model. Matrix factorization aims to minimize
the difference between observations X and the estimations
U W�. In general, to avoid overfitting and capture temporal
relations/similarities [25], the regularizer of U and W is added
to the objective function described in the following:

argmin
U,W

{
1

2

∥∥∥X − U W�
∥∥∥2

F
+R1 (U, W ) +R2 (W )

}
, (1)

where R1 (U, W ) = 1

2η

(
‖U‖2F + ‖W‖2F

)
with regularization

parameter η. Temporal smoothing is achieved by adding a
smoothing regularization term, for example:

R2 (W ) = β

2

R∑
r=1

T−1∑
t=2

(
wt−1,r − 2wt,r +wt+1,r

)2
, (2)

where β is the temporal regularization parameter.
However, even with temporal regularization, matrix factor-

ization still cannot fully capture anomalies in the generative
mechanism or temporal dynamics of the data because the
goal of matrix factorization is to reproduce the observations
instead of capturing the temporal dynamics. The following
subsection presents a dynamic tensor learning model for
anomaly detection to fill this gap.

IV. LOW-RANK DYNAMIC TENSOR LEARNING MODEL

A. Model Framework

To model the generative temporal dynamics, we assume
the data follows a time-varying VAR(p) with order p = 1
(i.e., first-order):

xt+1 = At xt + εt , for t = 1, . . . , T − 1, (3)

where At ∈ R
N×N is a time-varying coefficient matrix cap-

turing the temporal dynamics/dependencies in spatiotemporal
data and εt is a zero-mean Gaussian noise vector. As At

is time-varying and we expect adjacent time instances to
have little difference for a steady system, so the problem of
estimating A can be formulated as the following optimization
problem with system matrix smoothing:

argmin
A

{
1

2

T−1∑
t=1

‖xt+1 − At xt‖2F +R(A)

}
, (4)

where R(A) is a regularizer defined as (At−1 − At ) −
(At − At+1) constraining the adjacent time.

To solve problem (4), the collection of system coefficient
matrices along the whole period can be organized as a system

tensor A ∈ R
N×N×T−1 with the t th frontal slice A::t = At .

However, estimating A in (4) is practically infeasible, given a
large number of parameters N2 (T − 1). Therefore, we need
to seek alternative approaches to parameterize the model.
Recent work [5] and [6] consider imposing a low-rank struc-
ture in modeling the system tensor A, which have shown
promising results in capturing complex dependencies and
dynamics among a set of time series. Following this method,
we assume the system tensor also exhibits strong spatiotem-
poral patterns/signatures following a low-rank structure for
spatiotemporal traffic data. In this paper, we use a CP structure
to model A:

A =
R∑

r=1

ur ◦ vr ◦ wr , (5)

where ur , vr , and wr are the r th column of factor matrices
U ∈ R

N×R , V ∈ R
N×R , and W ∈ R

(T−1)×R , respectively,
the symbol ◦ represents the outer product.

The CP assumption reduces the number of parameters
significantly from N2(T − 1) to R(2N + T − 1) due to
R � N and T , thus providing us with a parsimonious
solution. Figure 1 gives a graphical illustration of the tensor
learning model for multivariate time series data. Specifically,
U and V are two spatial factor matrices, which determine the
loadings of At onto the spatial dimensions in the data, and
W is the temporal factor matrix that characterizes the time-
varying patterns in system dynamics. Therefore, we have a
new optimization problem with factor matrices U , V and W
as variables:

argmin
U,V ,W

1

2

T−1∑
t=1

‖xt+1 − At xt‖2F +R1 (U, V , W ) +R2 (W ) .

(6)

Similar to the temporal matrix factorization model
in (1), here we add a standard Frobenius norm regularizer

R1 (U, V , W ) = 1

2η

(
‖U‖2F + ‖V ‖2F + ‖W‖2F

)
and also an

identical temporal regularizer R2 (W ) as in Equation (2) to
avoid false alarms and increase the generalization power of
the model. Parameters η and β control the importance of R1
and R2, respectively. One critical challenge in estimating this
model is to tune the two regularization parameters. A common
approach to obtain the appropriate regularization parameters
is to apply grid search and perform cross-validation. We will
cover this in the following section.

B. Model Inference

The optimization problem in Equation (6) is multi-convex,
which can be solved using an alternating projection method
that takes each block as convex. In other words, we update
the parameters in one block at a time and keep the rest
parameters fixed. To simplify the model, we first decompose
the frontal slices of A at the outset as At = U Dt V�, where
Dt = diag (Wt :). With this decomposition, the overall loss
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Fig. 1. A graphical illustration for the LRDTL model for spatiotemporal traffic data (blue: observations xt , green: system tensor A, red: latent factor vectors).

function can be written as:

L (U, V , W )

= 1

2

T−1∑
t=1

∥∥∥xt+1 − U Dt V
�xt

∥∥∥2

F

+ 1

2η

(
‖U‖2F + ‖V ‖2F + ‖W‖2F

)
+ β

2
‖QW‖2F , (7)

where Q is the coefficient matrix of Equation (2).
Harris et al. [5] has provided the full derivations of updating

rules for solving ∇U L = 0, ∇V L = 0, and ∇W L = 0 in
similar tensor regression model. In the following, we provide
the gradient of the loss function with respect to each variable.
Algorithm 1 summarizes the alternating projection method to
get optimal U , V , and W .

1) Gradient w.r.t. the Left Spatial Modes U:

∇U L = U

(
T−1∑
t=1

Dt V
�xt x�t V Dt + 1

η
IR

)

−
(

T−1∑
t=1

xt+1x�t V Dt

)
, (8)

where IR is a R× R unit matrix. Set ∇U L = 0, we can obtain
the update function of U solving by solving a linear system:

U =
(

T−1∑
t=1

xt+1x�t V Dt

)(
T−1∑
t=1

Dt V�xt x�t V Dt + 1

η
IR

)−1

.

(9)

2) Gradient w.r.t. the Right Spatial Modes V :

∇V L =
(

T−1∑
t=1

xt x�t V Dt U
�U Dt

)

−
(

T−1∑
t=1

xt x�t+1U Dt

)
+ 1

η
V

≡
T−1∑
t=1

Lt V Rt + 1

η
V − H. (10)

Let ∇V L = 0, we get a Sylvester equation [26] for V :

T−1∑
t=1

Lt V Rt = H − 1

η
V . (11)

For small N and R, we can use the Kronecker product
and vectorization operation to solve Equation (11); however,

it is impractical for large N . One efficient method for solving
the Sylvester equation is conjugate gradients (CG) [27], and
we apply a modified CG named preconditioned conjugate
gradients (PCG) to speed up the convergence.

3) Gradient w.r.t. the Temporal Modes W: The partial
derivatives of L with respect to W can be taken for each
diagonal matrix Dt :

∇Dt L = V�xt x�t V Dt U
�U + 1

η
Dt

+ β Q�QDt − V�xt x�t+1U

≡
(

L ′t Dt R′t + 1

η
Dt + β Q�QDt − J

)
∗ I, (12)

where ∗ is the Hadamard product to constraint ∇Dt L is
diagonal. The Theorem 2.5 in [28] is applied to simplified the
Equation (12) and we also applied PCG algorithm to obtain
the solution of temporal pattern W :

vec(∇W L) = vec

(
T−1∑
t=1

(
L ′t ∗ R′t +

1

η
IR

)
W�t : + β Q�QW

)

− vec(J ). (13)

C. Implementation Details

1) Determine the Rank of CP Decomposition: For all the
low-rank models, the rank of the model is a pre-determined
parameter [5]. A large rank will better fit the data, but in
the meanwhile, it involves more parameters that may increase
the risk of overfitting and time-consuming. On the other
hand, a small rank may be insufficient in capturing complex
interdependence in the data [29]. Here, we apply a sensitivity-
driven rank selection considering the ratio threshold of sin-
gular values to determine the size of rank [30]. Specifically,
the singular values λ1:N of system matrices are obtained
from singular value decomposition (SVD) and the truncation
ratio threshold is defined as cumulative eigenvalue percentage
(CEP)

∑R
i=1 λi/

∑N
i=1 λi . By doing so, the low-rank model

can capture enough information from data with a proper rank.
2) Determine the Regularization Parameters: The two reg-

ularization parameters η and β play an essential role in
the model, enhancing the model’s generalization power and
avoiding overfitting. To tune these two parameters, we perform
a grid search on η and β and apply K -fold cross-validation to
find the best combination of regularization parameters. This
paper defines K based on the input’s periodic nature to keep
the spatiotemporal correlation. For example, if we have a data
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set of K weeks, we may consider each week as a group. The
root-mean-square error (RMSE) is used for model evaluation:

RMSE =
√√√√ 1

N(T − 1)

T−1∑
t=1

‖xt+1 − At xt‖2F . (14)

In training the model, we first estimate the matrix A =
X2:T X†

1:T−1 which can be decomposed by SVD as A =
U0�V�0 . Because R � N , we truncate the U0 ∈ R

N×R

and V0 ∈ R
N×R to be the initial of left spatial matrix and

right spatial matrix, respectively. The initial temporal matrix
W0 is set to a matrix of all ones. In the testing model,
the optimal U � and V � obtained from the training model are
used as initial U0 and V0. The initial W0 is calculated by
W0 = A(3)(U0 � V0)(U�0 U0 ∗ V�0 V0)

† [31].
The absolute tolerance γa and relative tolerance γr of

the decrease in the loss function (7) are both applied in
Algorithm 1 as a stopping criteria. We set γa = 10−6,
γr = 10−4, and the Algorithm 1 stops when reaching either
criterion.

Algorithm 1 Alternating Minimization Algorithm
Input: Raw data X , tensor rank R, regularization parameters

η and β, relative tolerance γr and absolute tolerance γa .
Output: Optimal factor matrices U �, V � and W �.
1: Initialize U , V and W .
2: repeat
3: U (i+1) ← arg minU L

(
U (i), V (i), W (i)

)
in Equation (9)

(by solving a linear system);
4: V (i+1) ← arg minV L

(
U (i+1), V (i), W (i)

)
in Equa-

tion (11) (by preconditioned conjugate gradient);
5: W (i+1) ← arg minW L

(
U (i+1), V (i+1), W (i)

)
in Equa-

tion (13) (by preconditioned conjugate gradient);
6: rmse← RMSE in Equation (14).
7: until convergence
8: return U �, V �, and W �.

The general procedure of K -fold cross-validation to
search optimal regularization parameters is summarized in
Algorithm 2.

3) Anomaly Detection Indicator: After obtaining the opti-
mal regularizer parameters η� and β�, we apply the
Algorithm 1 on the whole data set to obtain the final latent
factor matrices and analyze abnormal patterns on the temporal
latent factor W . As mentioned before, the system matrix At

should keep relatively steady over time, so a dynamic anomaly
occurs if there is an abrupt change in W when fixing spatial
latent factors. Therefore, we define anomaly score St as the
absolute value of the sum of the first difference of Wt : across
all the latent modes:

St =
R∑

r=1

∣∣Wt+1,r −Wt,r
∣∣ , t ∈ [1, T − 1] (15)

V. CASE STUDY

In this section, we apply the tensor learning model on
synthetic vector autoregressive data set (case 1) at first to

Algorithm 2 K -Fold Cross-Validation for Searching Optimal
Regularization Parameters
Input: Raw data X , tensor rank R, stopping criteria γa and

γr , regularization parameters set η and β, and number of
data groups (weeks) K .

Output: Optimal regularization parameters η� and β�.
1: Split the data set into K groups.
2: for each η and β do
3: for each k = 1, . . . , K do
4: DTest = the kth week’s data of X ;
5: DTrain = remaining data of X ;
6: Apply Algorithm 1 on DTrain to get U �, V � and W �;
7: repeat
8: W ← arg minW L (U �, V �, W ) on DTest
9: until convergence.

10: εk ← RMSE in Equation (14).
11: end for
12: Eη,β ←∑K

k=1 εk/K .
13: end for
14: η�, β�← argmin η,β{Eη,β};
15: return η�, β�.

measure the efficiency of the proposed unsupervised method
and then apply on the traffic speed data set collected in
Seattle, US (case 2). As a comparison, we also show the
anomaly detection results obtained from the switching Kalman
filter (SKF) and switch Kalman smoother (SKS) and temporal
matrix factorization (MF) model.

A. Case Study 1: Synthetic Data Set

To examine the proposed LRDTL framework’s effective-
ness, we first consider an artificial case using synthetically
generated data. The data set is generated from a time-varying
vector autoregressive model with a Gaussian noise included,
as described in Equation (3). Specifically, we consider two sys-
tem matrices, and each element of them are randomly drawn
from two uniform distribution as A1 : ai j ∼ U[−0.4, 0.4] and
A2 : ai j ∼ U[−0.8, 0.8], for i, j ∈ [1, N] [10]. A Gaussian
noise N (0, 1) is added to each element of the system matrix.
We set N = 10, T = 400 to generate data by concatenating
two VAR(1) processes dominated by A1 and A2 alternatively.
The generated data includes four time-blocks with a fixed
length T ′ = 100 of each and three change points at t = 101,
t = 201 and t = 301 which can be regarded as anomalies.
The synthetic data with the two varying states are depicted in
different background colors is illustrated in Figure 2 (a).

We compared the LRDTL model with the traditional tem-
poral MF model described in (1) and state-switching models,
including SKF and SKS [10]. SKF and SKS turn the nonlinear
system dynamics to linear dynamics as discrete modes by
specifying a process model for each mode and then estimating
the probability of switching from one mode to another at each
time points [32], which are widely used in detecting change
points. There are two designed system matrices in generating
the synthetic data; therefore, the number of states is 2 in both
SKF and SKS model.
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Fig. 2. The results of the synthetic data set. (a): Synthetic data generating
from VAR(1) process by two system matrices; (b): Probability of state 1 by
SKF (solid line for 2 states, dot line for 3 states); (b): Probability of state 1 by
SKS (solid line for 2 states, dot line for 3 states); (c): Anomaly score by MF;
(d): Anomaly score by LRDTL.

We set the truncation ratio threshold set as 0.75 to determine
rank R, and we get R = 4 for both MF and LRDTL. We set
the optimal regularization parameters η = 10, β = 1 in MF
and η = 1, β = 1000 in LRDTL model, which are obtained
by the cross-validation in Algorithm 2.

The inferred state probability sequences by SKF and
SKS are illustrated in Figure 2 (b) and (c), respectively.
It can be seen that SKF shows several state-switching points
(anomalies) within a specific state, where SKS performs much
smoother. Because SKF only includes forward inference given
the available observations up to time t , while SKS consid-
ers all observations [10]. In doing so, the uncertainty will
be significantly reduced by conditioning on past and future
observations [33].

We apply MF model on synthetic data directly and the
anomaly score St in Equation (15) at time t is shown
in Figure 2 (d). We find that the magnitude of the tempo-
ral pattern affects the anomaly score significantly. A larger
magnitude of observation may easier to get a higher anomaly
score, which is difficult to set a proper threshold to recognize
anomalies. The anomaly threshold is 3 in the MF model to
avoid numerous anomalies. Though the state switching can
be found by comparing temporal pattern differences for a
period using MF, it has two main drawbacks here: (i) it cannot
detect switching points immediately; (ii) it is not a straightfor-
ward way to display the switching points due to magnificent
impact. However, the LRDTL model can overcome these two
shortcomings.

Figure. 2 (e) shows the anomaly score S by the proposed
method LRDTL model, and we find the score is relatively low

Fig. 3. The traffic speed data set. (a): The average speed of sensors,
(b): The cumulative eigenvalue percentage of traffic speed data, (c): The
system matrices of sensors (the first week), (d): The cumulative eigenvalue
percentage of system matrices (the first week).

Fig. 4. The boxplot of anomaly score S by (a): MF model and (b): LRDTL
model.

except for three extremely high points at time t = 102, 201
and 301. The anomaly threshold is 0.1 in this case. Compared
with the other three methods, especially the MF model, all the
anomalies can be detected instantly by LRDTL. Though SKS
can detect the second anomaly correctly, it exhibits time delay
when detecting the other two anomalies. Another limitation of
SKF and SKS is the number of states is a pre-determined
parameter, and an improper state number might lead to a
false alarm. For instance, the dotted line presenting three
states of SKF/SKS is also shown in Figure 2 (b) and (c).
It can be seen that the probability of state 1 will drop under
0.5 between t = 131 and t = 171, suggesting that the model
detects two incorrect anomalies. It is hard to determine the
number of states in practice due to the dynamic correlation
with real traffic data. In the following, we will only compare
the effectiveness of MF and LRDTL using real-world traffic
speed data.

B. Case Study 2: Seattle Traffic Speed Data Set

1) Traffic Speed Data: Our numerical experiment is based
on a traffic speed data set collected by inductive loop detectors
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Fig. 5. The raw traffic speed data at three sensors (sensor 317, sensor 182 and sensor 22) and the anomaly score by MF and LRDTL.

located on the highway of Seattle [34]. The data measures
from 321 sensor stations (156 North to South or East to
West sensor stations and 165 South to North or West to
East sensor stations) on four freeways (I-5, I-405, I-90, and
SR-520) of Seattle at an interval of 5 minutes (288 time-slots
per day) in 2015. In the experiment, we use the data of January
(M = 321 and N = 8064) to demonstrate the effectiveness of
the method (4 weeks in total).

The traffic speed data set and its dynamic matrices are
shown in Figure 3. Specifically, Figure 3 (a) shows the
average speed of sensors over four weeks, and its cumulative
eigenvalue percentage (CEP) is shown in Figure 3 (b). The
system matrices for the first week and its corresponding CEP
are shown in Figure 3 (c) and (d), respectively.

From Figure 3 (a), we can see that the speed data set follows
a periodic time-varying pattern with a clear difference from
weekdays to weekends. The difference between peak hours
and off-peak hours is also significant within a day. On the
other hand, the CEP of traffic data obtained from SVD also
demonstrates the first few latent factors can well capture the
low-rank property of traffic data. We use the first week of
system matrices to illustrate its low-rank characteristics. The
system matrix At is calculated by xt+1x†

t at each time t and
concatenated along temporal dimension (Figure 3 (c)). Like the
CEP of traffic data, the system matrices can also be estimated
by several latent factors shown in Figure 3 (d).

2) Anomaly Detection: We apply the temporal matrix fac-
torization model on the traffic speed data directly with the
same k-fold cross-validation process by setting rank R = 82
(CEP = 0.75). The temporal matrix factorization model
is estimated using a gradient descent algorithm proposed
in [35] by introducing a Laplacian regularization term on
the temporal factor matrix W , which has the same effect as
Equation (2).

Fig. 6. The average Frobenius norm of system matrices reconstruction error
under different sensor number N .

Fig. 7. The estimated system matrices Ât from 9:05 - 9:15 on January 21st.

We next apply the proposed LRDTL model on the traffic
speed data X and obtain the CP decomposition for the system
dynamics tensor A. Note that W characterizes the temporal
evolution of system dynamics (i.e., VAR coefficient matrix At

of xt+1 = At xt ) instead of the observation xt itself. In other
words, At reflects the dynamic of the traffic system, and the
abrupt changes of At is regarded as anomalous dynamics
measured by S. Specifically, we apply LRDTL with R = 40
(CEP = 0.75), η = {0.001, 0.01, 0.1} and β = {1, 10, 100} to
find the optimal regularization parameters. The best model is
obtained with η = 0.01 and β = 10, with an average RMSE
of 3.7936. The spatiotemporal latent patterns of the one-month
traffic data set is obtained by Algorithm 1 based on the optimal
parameters.
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Fig. 8. The difference of the estimated system matrices 	 Ât = Ât − Ât−1 between 8:50 a.m. to 9:45 a.m. on January 21st.

Figure 4 (a) and Figure 4 (b) show the boxplots of anom-
aly scores S obtained from MF and LRDTL, respectively.
The original S are also shown in Figure 5 (d) and (e),
respectively. The outliers (red symbol) are measured by a
distance of 1.5 times interquartile range (IQR). We can see that
the LRDTL model has a smaller IQR but more outliers than
those in the MF model, which means that the LRDTL model
performs much better in distinguishing normal time points and
abnormal time points.

Since there is no label in traffic time-series point to illustrate
if it is an anomaly or not, we compare the raw speed
data and anomaly score to demonstrate the proposed model’s
efficiency in Figure 5. It can be seen that some sensors in
Figure 5 (a) - (c) may not show similar patterns due to the
complexity of the spatiotemporal traffic network, causing the
difficulty of analyzing the anomaly detection problem directly
from the raw data. For example, there are two slow-speed
(around 25 km/h) periods from Sensor 22, which can be
regarded as anomalies comparing with other time instances.
However, there is no such unusual behavior from Sensor 317 at
the same time. Slow speed is a period phenomenon in a
specific period of a day in Sensor 182. The apparent spike
signals can be found in the difference of dynamical temporal
modes shown in Figure 5 (e), providing an intuitive way to
detect anomalies.

We select three time-points with the highest anomaly score
for the MF model (green shaded windows) and the LRDTL
model (red shaded windows), respectively. Several obvious
spikes that reveal anomalies in the typical traffic speed time-
series data in Figure 5 (a) - (c) can be detected by the proposed
model according to S. Although the MF model can also detect
anomalies, it is difficult to set a threshold to determine if it
is an anomaly or not due to the similar S, which can lead to
false alarm (also occurs in case study 1).

3) Dynamic Anomaly Analysis: To measure how the per-
formance of the estimated system matrix Â varies with the
number of sensors, we depict the reconstruction error between
real system matrices A and Â as Frobenius norm ||A − Â||2F
averaged across the first week in Figure 6, where the numbers
of sensors are selected as {50,100,150,200,250,300}. Under
each number of sensors, the rank threshold is also set as 0.75 to

determine the rank. As we can see in Figure 6, the LRDTL
model works stable with an increasing number of sensors.

To better understand how LRDTL works in detecting
dynamics anomaly, we show a detailed example at 9:10 a.m.
on January 21st in Figure 5. The recovered system matrices
Ât obtained from two spatial latent matrices U and V with the
specific temporal w during 9:05 to 9:15 on January 21st are
shown in Figure 7. We can see the estimated system matrices
show the sub-block and diagonal characteristics, which means
that the last observation mainly determines the travel speed
on the same sensor and the off-diagonals mainly captures the
effects of neighbor sensors.

The difference system matrices 	 Ât = Ât − Ât−1 near
9:10 a.m. are shown in Figure 8. From the matrix difference,
we can see that the system matrix dramatically changes
between 9:10 and 9:15. Specifically, the system matrix keeps
relatively stable before the anomaly occurs, which leads to
almost all the entries of the system difference matrix being
zero before 9:00. When an anomaly occurs, the system matrix
changes in one direction and then changes in the opposite
direction to recover from the anomaly impact (positive and
negative values in the matrix means direction). After the
anomaly, the system matrix returns to relative stability again.
Besides, we can also find the anomaly effect lasts around
30 minutes from 9:00 to 9:30.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose a new modeling framework
to detect anomalous dynamics in multivariate spatiotemporal
traffic time series data. Unlike previous factorization-based
approaches—such as PCA and temporal matrix factorization—
which model the data X directly, we use a time-varying VAR
model to characterize the generative mechanism and tempo-
ral dependencies (i.e., system tensor A). To efficiently and
effectively model the system tensor, we transform the time-
varying VAR problem to a low-rank tensor learning problem.
As a result, we can characterize the system dynamics using
latent factor matrices in a parsimonious way. This model not
only uncovers the expected evolving and recurrent dynamics
of traffic data but also serves as a new anomaly detection
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Fig. 9. The structure of online anomaly detection.

framework to identify and diagnose abnormal dynamics in
spatiotemporal traffic data, which differs from its expected
behavior recovered by the low-rank representation.

We assume the system dynamics tensor of the autoregressive
model follows a simple structure with a low CP rank. Thus,
the optimization problem can be efficiently solved by the
alternating projection method derived in [5], in which different
approaches such as linear systems and conjugate descent are
used for different variables. We develop two case studies based
on a synthetic data set and a large-scale spatiotemporal traffic
speed data set to demonstrate the effectiveness of the proposed
framework by comparing it with the traditional temporal
matrix factorization model with identical regularization terms.
Our results show that the tensor learning framework can
identify more interesting anomalous dynamics that cannot
be detected from traditional factorization-based models.

One of the limitations of the proposed method is that
the model cannot detect anomalies in real-time. This is
because the temporal pattern wt does not have the forecasting
ability under the time-varying constraint ||QW ||2F . To over-
come the problem, the time-varying constraint can be set as
wt+1 = Fwt [14] to capture dynamic of temporal pat-
tern, where F is the coefficient matrix of temporal pattern.
Therefore, the online anomaly detection structure is illustrated
in Figure 9, which is also equivalent to the state-space model.
In the historical part, we can first obtain the temporal dynamic
wt from the system matrix At based on CP decomposition
shown in Figure 1, and then update the time-varying temporal
coefficient matrix F by wt+1 = Fwt . In the prediction part,
we can obtain wt+3 = Fwt+2 to detect anomalies in real-
time and the system matrix can also be acquired by At+3 =∑R

r=1 ur ◦ vr ◦wr,t+3. In the end, the prediction xt+4 can be
obtained from xt+4 = At+3xt+3.

There are several directions for future research. (i) The
current model requires careful tuning of regularization parame-
ters, which is computationally expensive. The tuning process is
data-specific, and there exist no universal solutions. To address
this issue, we are interested in developing the Bayesian
counterpart of this model to avoid the tuning of regulariza-
tion parameters and achieve automatic learning for different
applications/data sets. (ii) This proposed model focuses on
multivariate time series data. However, we often encounter
high-dimensional data for transportation applications. For
example, traffic demand can be organized as a matrix-valued
time series with two separate spatial dimensions for both origin
and destination. It is a challenging question to model and cap-
ture the complex system dynamics in such high-dimensional
data sets. (iii) The current model uses a third-order system

tensor to capture temporal dynamics. However, the third-order
representation may not be very efficient in modeling the peri-
odic and recurrent nature of traffic data sets (i.e., short-term
and long-term trends [4]). One potential approach is to reorga-
nize the system dynamics tensor (spatial×spatial×timestamp)
with a four-order (spatial×spatial×timestamp×day). For the
28-day traffic speed data in our case study, the fourth-order
representation can further reduce the number parameters from
(321+ 321+ 288× 28)× R to (321+ 321+ 288+ 28)× R
and this will allow us to use a larger rank R to capture temporal
dynamics better.
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