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Abstract— Spatiotemporal traffic time series (e.g., traffic
volume/speed) collected from sensing systems are often incom-
plete with considerable corruption and large amounts of missing
values, preventing users from harnessing the full power of
the data. Missing data imputation has been a long-standing
research topic and critical application for real-world intelligent
transportation systems. A widely applied imputation method
is low-rank matrix/tensor completion; however, the low-rank
assumption only preserves the global structure while ignores the
strong local consistency in spatiotemporal data. In this paper,
we propose a low-rank autoregressive tensor completion (LATC)
framework by introducing temporal variation as a new regular-
ization term into the completion of a third-order (sensor ×
time of day × day) tensor. The third-order tensor structure
allows us to better capture the global consistency of traffic
data, such as the inherent seasonality and day-to-day similarity.
To achieve local consistency, we design the temporal variation
by imposing an autoregressive model for each time series with
coefficients as learnable parameters. Different from previous
spatial and temporal regularization schemes, the minimization of
temporal variation can better characterize temporal generative
mechanisms beyond local smoothness, allowing us to deal with
more challenging scenarios such as “blackout” missing. To solve
the optimization problem in LATC, we introduce an alternat-
ing minimization scheme that estimates the low-rank tensor
and autoregressive coefficients iteratively. We conduct extensive
numerical experiments on several real-world traffic data sets,
and our results demonstrate the effectiveness of LATC in diverse
missing scenarios.

Index Terms— Spatiotemporal traffic data, missing data impu-
tation, low-rank tensor completion, truncated nuclear norm,
autoregressive time series model.

I. INTRODUCTION

SPATIOTEMPORAL traffic data collected from various
sensing systems (e.g. loop detectors and floating cars)

serve as the foundation to a wide range of applications
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and decision-making processes in intelligent transportation
systems. The emerging “big” data is often large-scale, high-
dimensional, and incomplete, posing new challenges to model-
ing spatiotemporal traffic data [1], [2]. Missing data imputation
is one of the most important research questions in spatiotem-
poral data analysis, since accurate and reliable imputation
can help various downstream applications such as traffic fore-
casting, traffic control, and traffic management. In intelligent
transportation systems, the issue of missing and corrupted
data may arise from many reasons, including complicated
sensor malfunctioning, communication failure, and unsatisfied
sensor coverage. Therefore, developing effective missing data
imputation approaches is important for getting true signals
from partially observed data and improving data quality.

The key to missing data imputation is to efficiently charac-
terize and leverage the complex dependencies and correlations
across both spatial and temporal dimensions [3]. Different
from point-referenced systems, traffic state data (e.g., speed
and flow) is actually an individual time series with a fixed
time interval. This allows one to represent spatiotemporal
traffic state data in the form of matrix (e.g., sensor × time)
or tensor (e.g., sensor × time of day × day) [4], and low-
rank matrix/tensor completion becomes a natural solution to
solve the imputation problem. Over the past decade, exten-
sive effort has been made on developing low-rank models
through principle component analysis, matrix/tensor factoriza-
tion (with predefined rank) and nuclear norm minimization
(see e.g., [4]–[7]). However, the default low-rank structure
(e.g., nuclear norm) purely relies on the algebraic property
of the data, which is invariant to permutation in the spatial
and temporal dimensions. In other words, with the low-rank
assumption alone, we essentially overlook the strong “local”
spatial and temporal consistency in the data. For instance,
we expect traffic flow data collected in a short period to
be similar and adjacent sensors to show similar patterns.
To this end, some recent studies have tried to encode such
“local” consistency by introducing total/quadratic variation
and graph regularization as a “smoothness” prior into low-rank
factorization models [2], [3], [8]–[10] and imposing time series
dynamics on the temporal latent factor in the factorization
framework [1], [11], [12]. However, these studies essentially
adopt a bilinear or multi-linear factorization model, which
requires a predefined rank as a hyperparameter.

In this paper, we propose a low-rank autoregressive tensor
completion (LATC) framework to impute missing values in
spatiotemporal traffic data. For each completed time series,
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we define temporal variation as the accumulated sum of
autoregressive errors. To characterize the low-rankness prop-
erty, we use truncated nuclear norm as an effective tool to
avoid the rank determination problem in factorization models.
The final objective function of LATC consists of two com-
ponents, i.e., the truncated nuclear of the completed tensor
and the temporal variation defined on the unfolded time series
matrix. The combination allows us to effectively characterize
both global patterns and local consistency in spatiotemporal
traffic data. The overall contribution of this work is threefold:

1) We integrate the autoregressive time series process into
a low-rank tensor completion model to capture both
global and local trends in spatiotemporal traffic data.
By minimizing the truncated nuclear norm of the third-
order (sensor×time of day×day) tensor, we can better
characterize day-to-day similarity, which is a unique
property of traffic time series data [13].

2) We develop an alternating minimization algorithm to
update tensor and coefficient matrix separately. The
tensor is updated via Alternating Direction Method
of Multipliers (ADMM), and the coefficient matrix is
updated by least squares with closed-form solution.

3) We conduct extensive numerical experiments on four
traffic data sets. Imputation results show the superiority
and advantage of LATC over some recent state-of-the-art
models.

The remainder of this paper is organized as follows.
We introduce related work and notations in Section II and
Section III, respectively. Section IV introduces in detail the
proposed LATC model. In Section V, we conduct extensive
experiments on some traffic data sets and make comparison
with some baseline models. Finally, we summarize the study
and provide future directions in Section VI.

II. RELATED WORK

There are two types of low-rank models to solve the
spatiotemporal missing data imputation problem.
Temporal matrix factorization. Factorization models approx-
imate the complete spatiotemporal matrix/tensor using bilinear
or multi-linear factorization models with a predefined rank.
To encode temporal consistency, recent studies have intro-
duced local smoothness and time series dynamics to regularize
the temporal factor (see e.g., [1], [2], [8], [11], [12]). The intro-
duction of generative mechanism (e.g., autoregressive model)
not only offers better interpolation/imputation accuracy, but
also enables the factorization models to perform forecasting.
However, a major limitation of these models is that they often
require careful tuning and selection of the rank.
Tensor representation. Another approach is to fold a time
series matrix into a third-order tensor (sensor × time of
day × day) by introducing an additional “day” dimension
(e.g., [6], [14], [15]). This is a particular case for traffic
data given the clear day-to-day similarity, but many real-world
time series data resulted from human behavior/activities (e.g.,
energy/electricity consumption) also exhibit similar patterns.
It is expected that the third-order tensor representation captures
more information, given that the multivariate time series

matrix is in fact one of the unfoldings of the third-order
tensor. As a result, the tensor structure not only preserves the
dependencies among sensors but also provides an alternative
to capture both local and global temporal patterns (e.g., traffic
speed data at 9:00 am on Monday might be similar to that
of 9:00 am on Tuesday). These tensor-based models have
shown superior performance over matrix-based models in
missing data imputation tasks.

Overall, low-rank matrix and tensor models aim at cap-
turing both temporal dynamics and spatial consistency for
spatiotemporal traffic data. Despite the wide use of low-rank
matrix and tensor imputation approaches, there are also
some classical imputation approaches, including time series
autoregression-based methods [16], k-nearest neighbor-based
methods [17], [18], Gaussian process-based methods [19].
However, compared to low-rank matrix/tensor models, these
models are limited for characterizing the spatial dependencies,
time series similarity, and temporal dynamics.

III. NOTATIONS

Throughout this work, we use boldface uppercase letters to
denote matrices, e.g., X ∈ R

M×N , boldface lowercase letters
to denote vectors, e.g., x ∈ R

M , and lowercase letters to denote
scalars, e.g., x . Given a matrix X ∈ R

M×N , we denote the
(m, n)th entry in X by xm,n , and use xm,[t+1:] ∈ R

(N−t)

to denote the sub-vector that consists of the last N − t
entries of xm ∈ R

N . The Frobenius norm of X is defined
as �X�F =

��
m,n x2

m,n , and the �2-norm of x is defined

as �x�2 =
��

m x2
m . We denote a third-order tensor by

X ∈ R
M×I×J and the kth-mode (k = 1, 2, 3) unfolding

of X by X (k) [20]. Correspondingly, the folding operator
foldk(·) converts a matrix to a third-order tensor in the kth-
mode. Thus, we have foldk(X (k)) = X for any tensor X .
For X ∈ R

M×I×J , its Frobenius norm is defined as �X�F =��
m,i, j x2

m,i, j and its inner product with another tensor is

given by �X ,Y� = �
m,i, j xm,i, j ym,i, j where Y and X are

of the same size.

IV. METHODOLOGY

A. Tensorization for Global Consistency

We denote the true spatiotemporal traffic data collected from
M sensors over J days by Y , whose columns correspond to
time points and rows correspond to sensors:

Y =
⎡
⎣ | | |

y1 y2 · · · yI J
| | |

⎤
⎦ ∈ R

M×(I J ), (1)

where I is the number of time points per day. In the form
of matrix, the data has I J columns in total. The partially
observed matrix can be written as P�(Y ) with observed entries
supported on the observed index set �:

[P�(Y )]m,n =
�

ym,n, if (m, n) ∈ �,
0, otherwise,

where m = 1, . . . , M and n = 1, . . . , I J .
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We next introduce the forward tensorization operator Q(·)
that converts the multivariate time series matrix into a third-
order tensor. Temporal dimension of traffic time series is
divided into two dimensions, i.e., time of day and day.
Formally, a third-order tensor can be generated by the forward
tensorization operator as X = Q(Y ) ∈ R

M×I×J . Conversely,
the resulted tensor can also be converted into the original
matrix by Y = Q−1(X ) ∈ R

M×(I J ) where Q−1(·) denotes
the inverse operator of Q(·).

The tensorization step transforms matrix-based imputation
problem to a low-rank tensor completion problem. Global con-
sistency can be achieved by minimizing tensor rank. In prac-
tice, tensor rank is often approximated using sum of nuclear
norms �X�∗ [21] or truncated nuclear norms �X�r,∗ [6],
where r is a truncation parameter (see section IV-C). Our
motivation for doing so is that the spatiotemporal traffic data
can be characterized by both long-term global trends and
short-term local trends. The long-term trends refer to certain
periodic, seasonal, and cyclical patterns. Traffic flow data over
24 hours on a typical weekday often shows a systematic “M”
shape resulted from travelers’ behavioral rhythms, with two
peaks during morning and evening rush hours [22]. The pattern
also exists at the weekly level with substantial differences
from weekdays to weekends. The short-term trends capture
certain temporary volatility/perturbation that deviates from the
global patterns (e.g., due to incident or special event). The
short-term trends seem to be more “random”, but they are
common and ubiquitous in reality. LATC leverages both global
and local patterns by using matrix and tensor representations
simultaneously.

B. Temporal Variation for Local Consistency

We define temporal variation of a time series matrix Z
given a coefficient matrix A ∈ R

M×d and a time lag set
H = {h1, . . . , hd } as

�Z�A,H =
	
m,t

(zm,t −
	

i

am,i zm,t−hi )
2. (2)

As can be seen, �Z�A,H quantifies the total squared error
when fitting each individual time series zm with an autore-
gressive model with coefficient am . Given an estimated A,
minimizing the temporal variation will encourage the time
series data Z to show stronger temporal consistency. In other
words, the multivariate time series matrix Z will be better
explained by a series of autoregressive models parameterized
by A. It should be noted that both Z and A are variables in
the proposed temporal variation term.

C. Low-Rank Autoregressive Tensor Completion (LATC)

To ensure both global consistency and local consistency,
we propose LATC as the following optimization model

min
X,Z,A

�X�r,∗ + λ

2
�Z�A,H

s.t.

�
X = Q (Z) ,
P�(Z) = P�(Y ),

(3)

where Y ∈ R
M×(I J ) is the partially observed time series

matrix. r ∈ N+ is the truncation which satisfies r <
min{M, I, J }.

The formulation of LATC ensures both global consis-
tency and local consistency by combining truncated nuclear
norm minimization with temporal variation minimization. The
weight parameter λ in the objective function controls the
trade-off between truncated nuclear norm and temporal vari-
ation. Fig. 1 shows that Y can be reconstructed with both
low-rank properties and time series dynamics because the
constraint in (3), i.e., X = Q(Z), is closely related to the
partially observed matrix Y .

Most nuclear norm-based tensor completion models employ
the Alternating Direction Method of Multipliers (ADMM)
algorithm to solve the optimization problem. However, due to
the introduction of autoregression coefficient matrix, we can
no longer apply the default ADMM algorithm to solve the
optimization problem (3). Here we consider applying an
alternating minimization scheme by separating the original
optimization into two subproblems. Starting with some given
initial values (X 0, Z0, A0), we can update {(X �, Z�, A�)}�∈N

by solving the two subproblems in an iterative manner. In the
implementation, we first fix A� and solve the following
problem to update the variables X �+1 and Z�+1:

X �+1, Z�+1 := arg min
X,Z

�X �r,∗ + λ

2
�Z�A�,H

s.t.

�
X = Q(Z),
P�(Z) = P�(Y ).

(4)

where � denotes the count of iteration in the alternating min-
imization scheme. Then, we fix Z�+1 and solve the following
least squares problem to estimate the coefficient matrix A�+1:

A�+1 := arg min
A

�Z�+1�A,H. (5)

When A� is fixed, the subproblem in Eq. (4) becomes a
general low-rank tensor completion problem, it can be solved
using ADMM in a similar way as in [21] and [23]. The
augmented Lagrangian function of the optimization in Eq. (4)
can be written as

L(X , Z, A�,T ) = �X�r,∗ + λ

2
�Z�A�,H

+ρ

2
�X − Q(Z)�2

F

+

X − Q(Z),T

�
, (6)

where ρ is the weight parameter of the additional Frobenius
norm penalty and T ∈ R

M×I×J is the dual variable. In par-
ticular, we keep P�(Z) = P�(Y ) as a fixed constraint to
maintain observation consistency. According to the augmented
Lagrangian function, ADMM can transform the problem in
Eq. (4) into the following subproblems in an iterative manner:

X �+1,ν+1 := arg min
X

L(X , Z�+1,ν, A�,T �+1,ν), (7)

Z�+1,ν+1 := arg min
Z

L(X �+1,ν+1, Z, A�,T �+1,ν), (8)

T �+1,ν+1 := T �+1,ν + ρ(X �+1,ν+1 − Q(Z�+1,ν+1)), (9)

where ν denotes the count of iteration in the ADMM. In the
following, we discuss the detailed solutions to Eqs. (7) and (8).
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Fig. 1. Illustration of the proposed LATC framework for spatiotemporal traffic data imputation with time lags H = {1, 2}. Each time series ym ,∀m ∈
{1, 2, . . . , M} is modeled by the autoregressive coefficients {am1, am2}.

1) Update Variable X : The optimization over X is a trun-
cated nuclear norm minimization problem. Truncated nuclear
norm of any given tensor is the weighted sum of truncated
nuclear norm on the unfolding matrices of the tensor, which
takes the form:

�X �r,∗ =
3	

k=1

αk�X (k)�r,∗ (10)

for tensor X ∈ R
M×I×J with

�3
k=1 αk = 1. For the

minimization of truncated nuclear norm on tensor, the above
formula is not in its appropriate form because unfolding a
tensor in different modes cannot guarantee the dependencies
of variables [21]. Therefore, we introduce X 1,X 2,X 3 and
they correspond to the unfoldings of X . Accordingly, it is
possible to obtain the closed-form solution for each X k :

X k := arg min
X

αk�X (k)�r,∗ + ρ

2

���Q−1(X ) − Z�+1,ν
���2

F

+
Q−1(X ) − Z�+1,ν,Q−1(T �+1,ν)
�

= arg min
X

αk�X (k)�r,∗

+ρ

2

���X −


Q(Z�+1,ν) − T �+1,ν/ρ

����2

F

= foldk



Dr,αk/ρ



Q(Z�+1,ν)(k) − T �+1,ν

(k) /ρ
��

, (11)

where D·(·) denotes the generalized singular value threshold-
ing that associated with truncated nuclear norm minimization
as shown in Lemma 1.

Lemma 1: For any α, ρ > 0, Z ∈ R
m×n , and r ∈ N+ where

r < min{m, n}, an optimal solution to the truncated nuclear
norm minimization problem

min
X

α�X�r,∗ + ρ

2
�X − Z�2

F , (12)

is given by the generalized singular value thresholding
[24]–[26]:

X̂ = Dr,α/ρ(Z) = U diag ([σ − �r · α/ρ]+) V�, (13)

where U diag(σ )V � is the SVD of Z. [·]+ denotes the positive
truncation at 0 which satisfies [σ −α/ρ]+ = max{σ −α/ρ, 0}.
�r ∈ {0, 1}min{m,n} is a binary indicator vector whose first r
entries are 0 and other entries are 1.

Gathering the results of X 1,X 2,X 3 in Eq. (11), we can
update the variable X by

X �+1,ν+1 :=
3	

k=1

αkX k . (14)

2) Update Variable Z: Given that X = Q(Z), we can
rewrite Eq. (8) with respect to Z as follows,

Z�+1,ν+1 := arg min
Z

λ

2
�Z�A�,H + ρ

2

���X �+1,ν+1 − Q(Z)
���2

F

−
Q(Z),T �+1,ν
�

= arg min
Z

λ

2
�Z�A�,H

+ρ

2

���Z − Q−1(X �+1,ν+1 + T �+1,ν/ρ)
���2

F
.

(15)

We use the following Lemma 2 to solve this optimization
problem.

Lemma 2: For any multivariate time series Z ∈ R
M×T

which consists of M time series over T consecutive time
points, the autoregressive process for any (m, t)th element of
Z takes

zm,t ≈
d	

i=1

am,i zm,t−hi , (16)

with autoregressive coefficient A ∈ R
M×d and time lag set

H = {h1, h2, . . . , hd }. This autoregressive process also takes
the following general formula:

�0 Z� ≈
d	

i=1

� i (a�
i 
 Z�) = �(A� 
 Z�), (17)

and for each time series zm ∈ R
T ,∀m, we have

�0 zm ≈
d	

i=1

am,i� i zm , (18)

where 
 denotes the Khatri-Rao product, and

�0 = �
0(T −hd )×hd IT −hd

� ∈ R
(T−hd )×T ,

� i = �
0(T −hd )×(hd−hi ) IT −hd 0(T−hd )×hi

�
∈ R

(T−hd )×T , i = 1, 2, . . . , d,

� = �
�1 �2 · · · �d

� ∈ R
(T −hd )×(dT ),
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are matrices defined based on time lag set H. Without loss of
generality, 0m×n denotes the m-by-n matrix of zeros, and Im

denotes the m-by-m identity matrix.
According to Lemma 2, there are two options for updating

Z when A and H are known. The first is to minimize the errors
in the form of matrix as described in Eq. (17), and the second
is to minimize the errors in the form of vector as described in
Eq. (18). The first solution involves complicated operations
and possibly high computational cost (see Theorem 1 in
Appendix A for details). We follow the second approach
which takes the vector form for optimizing Z. This yields
a closed-form solution in Lemma 3.

Lemma 3: Suppose �0,�1, . . . ,�d ∈ R
(T −hd )×T and

autoregressive coefficient A ∈ R
M×d are known as defined in

Lemma 2, then for any m ∈ {1, 2, . . . , M}, an optimal solution
to the problem

zm := arg min
z

1

2

������0 z −
d	

i=1

am,i� i z

�����
2

2

+ α

2
�z − xm�2

2,

(19)

is given by

zm := α(B�
m Bm + α I T )−1xm , (20)

where Bm = �0 − �d
i=1 am,i� i .

Remark. Lemma 3 in fact provides a least squares solution for
zm . It is also helpful to define Bm , m = 1, 2, . . . , M as sparse
matrices and interpret zm as the solution of the following linear
equation:

(B�
m Bm + α I T )zm = αxm . (21)

This can help avoid the expensive inverse operation on the
T -by-T matrix because T is a possibly large value.

According to Lemma 3, for any m ∈ {1, 2, . . . , M},
the closed-form solution to Eq. (15) is given by

z�+1,ν+1
m := ρ

λ



B�

m Bm + ρ

λ
IT

�−1

·Q−1
m (X �+1,ν+1 + T �+1,ν/ρ), (22)

where Bm = �0 − �d
i=1 a�

m,i� i in which �0,�1, . . . ,�d

follow the same definition as in Lemma 2.
3) Update Variable A: As mentioned above, A ∈ R

M×d is
the coefficient matrix in the defined temporal variation term.
To estimate A, we solve the following problem derived from
Eq. (5):

A�+1 := arg min
A

	
m,t

(z�+1,K
m,t −

	
i

am,i z
�+1,K
m,t−hi

)2

= arg min
A

	
m

���z�+1,K
m,[hd+1:] − V m am

���2

2
, (23)

where V m = �
vhd+1, · · · , v I J

�� ∈ R
(I J−hd )×d and vt =

(z�+1,K
m,t−h1

, · · · , z�+1,K
m,t−hd

)� ∈ R
d , t = hd +1, . . . , I J are formed

by Z�+1,K . Here, K is the maximum iteration in the ADMM.
Obviously, this optimization has a closed-form solution, which
is given by

a�+1
m := V †

m z�+1,K
m,[hd+1:],∀m, (24)

where ·† denotes the Moore-Penrose pseudo-inverse.

Algorithm 1 Imputer(Y ,H, ρ, λ, r)

Initialize T 0,0 as zeros and A0 as small random values.
Set P�(Z0,0) = P�(Y ), α1 = α2 = α3 = 1

3 , K = 3, and
� = 0.
while not converged do

for ν = 0 to K − 1 do
ρ = min{1.05 × ρ, ρmax};
for k = 1 to 3 do

Compute X k by Eq. (11);

Update X �+1,ν+1 by Eq. (14);
for m = 1 to M do

Update z�+1,ν+1
m by Eq. (22);

Update T �+1,ν+1 by Eq. (9);
Transform observation information by letting
P�(Z�+1,ν+1) = P�(Y );

for m = 1 to M do
Update a�+1

m by Eq. (24);
� := � + 1;

return recovered matrix X̂ .

Algorithm 1 shows the overall algorithm for solving LATC.
The algorithm has three parameters ρ, λ and r . Parameter
ρ controls the ADMM and the singular value thresholding.
Parameter λ is the trade-off between truncated nuclear norm
and temporal variation, which can be typically set to λ = c ·ρ.
Thus, c = 1 implies that these two norms have the same
importance in the objective. The recovered matrix is computed

by X̂
� = Q−1(X �,K ) at each outer iteration. The algorithm

returns the converged X̂ as the final result, if the convergence
criteria is met.

V. EXPERIMENTS

In this section, we evaluate the proposed LATC model
on several real-world traffic data sets with different missing
patterns.

A. Traffic Data Sets

We use the following four spatiotemporal traffic data sets
for our benchmark experiment.

• (G): Guangzhou urban traffic speed data set.1 This data
set contains traffic speed collected from 214 road seg-
ments over two months (from August 1 to September 30,
2016) with a 10-minute resolution (i.e., 144 time intervals
per day) in Guangzhou, China. The prepared data is of
size 214 × 8784 in the form of multivariate time series
matrix (or tensor of size 214 × 144 × 61).

• (H): Hangzhou metro passenger flow data set.2 This data
set provides incoming passenger flow of 80 metro stations
over 25 days (from January 1 to January 25, 2019) with
a 10-minute resolution in Hangzhou, China. We discard
the interval 0:00 a.m. 6:00 a.m. with no services, and

1https://doi.org/10.5281/zenodo.1205229
2https://tianchi.aliyun.com/competition/entrance/231708/information
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only consider the remaining 108 time intervals of a day.
The prepared data is of size 80 × 2700 in the form of
multivariate time series matrix (or tensor of size 80 ×
108 × 25).

• (S): Seattle freeway traffic speed data set.3 This data set
contains freeway traffic speed from 323 loop detectors
with a 5-minute resolution (i.e., 288 time intervals per
day) over the first four weeks of January, 2015 in Seattle,
USA. The prepared data is of size 323 × 8064 in the
form of multivariate time series matrix (or tensor of size
323 × 288 × 28).

• (P): Portland highway traffic volume data set.4 This data
set is collected from highways in the Portland-Vancouver
Metropolitan region, which contains traffic volume from
1156 loop detectors with a 15-minute resolution (i.e.,
96 time intervals per day) in January, 2021. The prepared
data is of size 1156 × 2976 in the form of multivariate
time series matrix (or tensor of size 1156 × 96 × 31).

Note that the adapted data sets and Python codes for our
experiments are available on Github.5

B. Missing Data Generation

To evaluate the performance of LATC for missing traffic
data imputation thoroughly, we take into account three miss-
ing data patterns as shown in Fig. 2, i.e., random missing
(RM), non-random missing (NM), and blackout missing (BM).
RM and NM data are generated by referring to our prior
work [4]. According to the mechanism of RM and NM data,
we mask certain amount of observations as missing values
(e.g., 30%, 70%, 90%), and the remaining partial observations
are input data for learning a well-behaved model. BM pattern
is different from RM and NM patterns, which masks observa-
tions of all spatial sensors/locations as missing values with
certain window length. BM is a challenging scenario with
complete column-wise missing. We set the missing rate in the
following experiments to 30%.

To assess the imputation performance, we use the actual
values of the masked missing entries as the ground truth to
compute MAPE and RMSE:

MAPE = 1

n

n	
i=1

���� yi − ŷi

yi

���� × 100,

RMSE =
����1

n

n	
i=1

(yi − ŷi )2, (25)

where yi and ŷi are actual values and imputed values, respec-
tively.

C. Baseline Models

For comparison, we take into account the following
baseline:

• Low-Rank Autoregressive Matrix Completion (LAMC).
This is a matrix-form variant of the LATC model.

3https://github.com/zhiyongc/Seattle-Loop-Data
4https://portal.its.pdx.edu/home
5https://github.com/xinychen/transdim

Fig. 2. Illustration of three missing data patterns for spatiotemporal traffic
data (e.g., traffic speed). Each time series represent the collected data from a
given sensor. In these graphics, two curves correspond to two different time
series. (a) Data are missing at random. Small circles indicate the missing
values. (b) Data are missing continuously during a few time periods. Segments
in gray indicate missing values. (c) No sensors are available (i.e., blackout)
over a certain time window.

• Low-Rank Tensor Completion with Truncation Nuclear
Norm minimization (LRTC-TNN, [6]). This is a low-rank
completion model in which truncated nuclear norm min-
imization can help maintain the most important low-rank
patterns. Since the truncation in LRTC-TNN is a defined
as a rate parameter, we adapt LRTC-TNN to use integer
truncation in order to make it consistent with LATC.

• Bayesian Temporal Matrix Factorization (BTMF, [1]).
This is a fully Bayesian temporal factorization framework
which builds the correlation of temporal dynamics on
latent factors by vector autoregressive process. Due to
the temporal modeling, it outperforms the standard matrix
factorization in the missing data imputation tasks [1].

• Smooth PARAFAC Tensor Completion (SPC, [10]). This
is a tensor decomposition based completion model with
total variation smoothness constraints.

D. Results

There are several parameters in LATC, including learning
rate ρ, weight parameter λ, truncation r , and time lag set H.
The most important parameters are the coefficient c = λ/ρ and
the truncation r . For other parameters including ρ and time
lag set H, we conduct preliminary test for choosing them. ρ is
chosen from {1×10−5, 1×10−4} for all data sets. To assess the
sensitivity of the model over c and r , we develop the following
setting for our imputation experiments:

• Time lag set is set as {1, 2, . . . , 6} for (G), (H), and
(S) data, and {1, 2, 3, 4} for (P) data;

• λ = c · ρ where c ∈ { 1
10

1
5 , 1, 5, 10};
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Fig. 3. RMSEs of LATC imputation on Guangzhou urban traffic speed data
where ρ = 1 × 10−4 for RM data and ρ = 1 × 10−5 for NM/BM data. The
smallest RMSE is achieved by: (a) c = 10, r = 30; (b) c = 10, r = 20, 25;
(c) c = 10, r = 15; (d) r = 10; (e) r = 5; (f) c = 10, r = 15.

• r ∈ {5, 10, 15, 20, 25, 30} and r < min{M, I, J }.
Fig. 3 shows the heatmaps of imputation RMSE values

achieved by LATC model on Guangzhou urban traffic speed
data. It demonstrates that: 1) for RM and BM data, when c =
10, LATC model achieves the best imputation performance
and the truncation r has little impact on the final results;
2) for NM data, the coefficient c is less important than the
truncation r . LATC model achieves the best performance
when the truncation is a relatively small value (e.g., 5, 10).
These results verifies the importance of temporal variation
minimization for RM and BM imputation.

Fig. 4 shows similar heatmaps for Hangzhou metro pas-
senger flow data. It can be seen that: 1) for RM and BM
data, when c = 1, LATC model achieves the best imputation
performance; 2) for NM data, LATC model achieves the
best performance with small coefficient c and truncation r
(e.g., 5).

By testing the LATC model in the same way, it can indicate
the importance of temporal variation on other two data sets.
On Seattle freeway traffic speed data, we observe that the
coefficient c has little impact on the final imputation for the
RM and NM data. However, there show the positive influence
of temporal variation in LATC for BM data. On Portland
highway traffic volume data, a relatively large coefficient c
(e.g., 5 and 10) can make the model less sensitive to the
various truncation values for RM and BM data.

Fig. 4. RMSEs of LATC imputation on Hangzhou metro passenger flow
data (ρ = 1 × 10−5). The smallest RMSE is achieved by: (a) c = 1, r = 15;
(b-c) c = 1, r = 10; (d) c = 1

10 , r = 5; (e) c = 1
5 , r = 5; (f) c = 1, r = 10.

As mentioned above, despite the use of truncated nuclear
norm built on tensor, the results also show the advantage of
temporal variation built on the multivariate time series matrix.
Due to the temporal modeling, temporal variation can improve
the imputation performance for missing traffic data imputation.
Table I shows the overall imputation performance of LATC
and baseline models on the four selected traffic data sets
with various missing scenarios. Of these results, NM and BM
data seem to be more difficult to reconstruct with all these
imputation models than RM data. In most cases, LATC outper-
forms other baseline models. Comparing LATC with LAMC
shows the advantage of tensor structure, i.e., LATC with tensor
structure performs better than LAMC with matrix structure.
Comparing LATC with LRTC-TNN shows the advantage of
temporal variation, i.e., temporal modeling with autoregressive
process has positive influence for improving the imputation
performance. For volume data sets (H) and (P), the relative
errors are quite high because some volume values are close
to 0 or relatively small and estimating these values would
accumulate relatively large relative errors.

Figs. 5, 6, and 7 show some imputation examples with
different missing scenarios that achieved by LATC. In these
examples, we can see explicit temporal dependencies under-
lying traffic time series data. For all missing scenarios, LATC
can achieve accurate imputation and learn the true signals from
observations even with severe missing data (e.g., NM/BM
data). In Fig. 5, it shows that the time series signal of passenger
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TABLE I

PERFORMANCE COMPARISON (IN MAPE/RMSE) OF LATC AND BASELINE MODELS FOR RM, NM, AND BM DATA IMPUTATION

Fig. 5. Imputed values by LATC for Hangzhou metro passenger flow data. This example corresponds to metro station #3 and the 4th day of the data set.
Black dots/curves indicate the partially observed data, gray rectangles indicate blackout missing, while red curves indicate the imputed values.

Fig. 6. Imputed values by LATC for Seattle freeway traffic speed data. This example corresponds to detector #3 and the 7th day of the data set.

flow is not complex. By referring to Table I, we can see
that LRTC-TNN without temporal variation outperforms the

proposed LATC model on Hangzhou metro passenger flow
data, and this demonstrates that not all multivariate time series
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Fig. 7. Imputed values by LATC for Portland traffic volume data. This example corresponds to detector #3 and the 8th day of the data set.

imputation cases require temporal modeling, for some cases
that the signal does not show strong temporal dependencies,
purely low-rank model can also provide accurate imputation.

VI. CONCLUSION

Spatiotemporal traffic data imputation is of great sig-
nificance in data-driven intelligent transportation systems.
In this study, we leverage some fundamental features such
as low-rankness properties and temporal dynamics into the
modeling of spatiotemporal traffic data in the presence of
missing values. The proposed LATC model preserves both
global low-rank structure (i.e., by minimizing the truncated
nuclear norm) and local temporal structure (i.e., by minimizing
the temporal variation) in multivariate traffic time series data.
We perform numerical experiments on some real-world traffic
data sets and the results show the advantages of LATC
over other low-rank models through the use of temporal
variation.

There are several directions to advance this research. First,
for simplicity, the proposed temporal variation ignores the
correlation structure among different time series and assumes
each time series follows an independent univariate autore-
gressive model. A potential direction is to introduce a mul-
tivariate scheme (e.g., vector autoregressive process) to better
characterize the correlation structure. The main challenge
here is how to encode such dependency when the number
of time series M becomes large. Second, the current mod-
eling framework assumes that there exist no noise/outliers
in the observed data, which may undermines the underlying
low-rank assumption of the data. To address this issue, one
can extend the LATC based on Noisy Low-Rank Tensor
Completion [26] by introducing an unknown error term.
Third, in addition to the imputation capability of LATC,
LATC can also be applied to spatiotemporal traffic forecasting
in the presence of missing values. The forecasting can be
obtained by considering future observations as missing values
following [27], [28].

APPENDIX A
SUPPLEMENTARY THEOREM

Theorem 1: Suppose �0 ∈ R
(T−hd )×T , � ∈ R

(T −hd )×(dT ),
and autoregressive coefficient A ∈ R

M×d as defined in

Lemma 2, then an optimal solution to the problem

min
Z

1

2

����0 Z� − �(A� 
 Z�)
���2

F
+ α

2
�Z − X�2

F ,

is given by

vec(Z�) := α[(B − C)�(B − C) + α I MT ]−1 · vec(X�),

where B = (I M ⊗�0) and C = (I M ⊗�)[(I M 
 A�)⊗ IT ].
⊗ denotes the Kronecker product.

Proof: In this case, we can use vectorization:
vec(�0 Z�) = (I M ⊗ �0) · vec(Z�),

vec(�(A� 
 Z�)) = (I M ⊗ �) · vec(A� 
 Z�)

= (I M ⊗ �)[(I M 
 A�)⊗ IT ] · vec(Z�),

where vec(·) denotes the vectorization operator for any given
matrix. Denote by f the objective of problem (26):

f = 1

2
�(B − C) · vec(Z�)�2

2 + α

2
� vec(Z�) − vec(X�)�2

2.

By letting

d f

d vec(Z�)
= (B − C)�(B − C) vec(Z�)

+α[vec(Z�) − vec(X�)] = 0,

we have

vec(Z�) = α[(B − C)�(B − C) + α I MT ]−1 · vec(X�).

�
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