
1. Introduction
Climate change is projected to increase the frequency and intensity of extreme weather events, including 
heat waves (IPCC, 2013). These projected changes in heat waves coupled with the urban heat island (UHI) 
effect, as manifested by elevated near-surface air temperatures in urban areas compared to their non-urban 
surroundings, exposes urban dwellers to additional heat stress. The higher urban temperatures are largely 
related to thermal and radiative properties of built surfaces, substantially different from its surrounding 
natural environment, and to a lesser vegetation coverage with limited evaporative cooling. UHI is further 
enhanced by heat emitted from transportation, heating and air conditioning systems (Oke, 1982). Adap-
tation and mitigation strategies considered to reduce UHI, which could reduce the impacts during heat 
waves, include increasing the reflectivity of urban regions and increasing vegetation coverage (Alexandri & 
Jones, 2008; Costanzo et al., 2016; Touchaei & Akbari, 2013). Development of effective adaptation and mit-
igation strategies will require information of mean and extreme temperature changes at super-resolution 
(<250 m). Climate change information at such super-resolution are not available for cities, primarily due 
to the inadequate representation of urban regions in climate models due to their coarse resolution. Climate 
processes are complex–more so in urban regions (Bai et al., 2018). Super-resolution climate modeling that 
includes good representation of urban regions is required to capture the urban-climate feedbacks. With sig-
nificant developments in high performance computing, it has now become possible to execute regional cli-
mate simulations at 4 to 1 km resolutions, but for shorter periods. High computational cost continues to be 
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and 250 m (HR) resolutions, which are used to train and validate the proposed super-resolution deep 
learning (DL) model/emulator. The DL model uses an efficient sub-pixel convolution layer to generate 
HR information from LR data, with adversarial training applied to improve physical consistency. The DL 
model reduces temperature errors significantly over urbanized areas present in the LR simulation, while 
also demonstrating considerable skill in capturing the magnitude and location of heat stress indicators. 
These results portray the value of the innovative simulator-emulator framework, that can be extended to 
other seasons/periods, variables and regions.

Plain Language Summary One of the major barriers in undertaking super-resolution 
(<250 m) urban climate simulations to generate climate and climate change information at high spatial 
and temporal resolutions, as required by many sectors, is their high computational cost. New approaches 
are therefore required to overcome this barrier. This paper makes use of the unique opportunity to couple 
machine learning and physical modeling to develop a computationally efficient simulator-emulator 
framework to generate super-resolution climate information. The trained deep neural network model 
generates high-resolution urban climate data from low-resolution (LR) inputs, considering also the urban 
morphology fields and inter-variable relationships to improve output realism. The developed framework, 
applied to urban heat-related variables, demonstrates the high potential of this approach as it captures 
well the magnitude and location of heat stress indicators. The generic nature of the developed framework 
makes it even more promising as it can be applied to other climate variables, periods and regions.
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a major barrier in undertaking super-resolution simulations. A simulation at 250 m requires more than 100 
times the computing resources required at 2.5 km over the same domain. Furthermore, larger ensembles 
of climate simulations are generally required to quantify uncertainty in climate projections, making it even 
more expensive. Recent advances in the area of machine learning provide an opportunity for developing hy-
brid approaches to overcome this obstacle and advance studies on climate-urban infrastructure interactions 
(Brenowitz & Bretherton, 2018; Scher, 2018).

Traditionally, physical modeling and machine learning have been treated as two different fields with very 
different scientific paradigms, i.e., theory-driven versus data-driven. The synergy between the two ap-
proaches has been gaining much attention recently (Reichstein et al., 2019). In recent years, deep-learning 
based image super-resolution models have been actively developed (Dong et al., 2015; Wang et al., 2015; 
Zhang et al., 2018), and they have been used to produce high-quality physical fields in various domains such 
as fluid dynamics (Xie et al., 2018), medical imaging (Trinh et al., 2014), and astronomical observations (Li 
et al., 2009). In general, the family of image super-resolution (SR) algorithms uses convolutional neural 
networks (CNNs) as their basic building blocks (Lai et  al.,  2017), and purely data-driven principle like 
generative adversarial nets (Ledig et al., 2017). Due to its data-driven nature, the CNN-based SR approach 
does not require solving complex equations. Therefore they can dramatically decrease the computational 
cost of generating high-resolution data once the parameters of CNNs are properly trained. Given the high 
computational cost for simulating high-resolution climate data, there has been a few attempts to directly 
apply models from image super-resolution domain to climate model outputs (Stengel et al., 2020; Vandal 
et al., 2017). However, the scales considered in those studies are too coarse to capture features that are crit-
ical for urban-climate feedbacks. Furthermore, multivariate dependencies and surface features have large 
impacts on climate, which were ignored in those studies.

This study focuses on the development, validation and application of a framework combining the physical-
ly based regional climate model GEM (Global Environmental Multi-scale) with deep learning techniques 
to generate super-resolution climate information efficiently. Given the importance of heat stress in urban 
regions, the focus is on emulating the two variables that have the most influence in determining heat stress: 
near-surface air temperature and dew point temperature for the summer season. A deep learning super-res-
olution model that can make full use of inter-variable relationships and dependencies on auxiliary fields is 
developed. The goal is to keep the development as generic as possible so that the framework can be extended 
to other seasons, variables, periods and regions.

The remainder of this manuscript is organized as follows: Section  2 describes the physical climate and 
machine learning models, and the experiments performed. Section 3 presents the super-resolution climate 
information obtained from the machine learning models and compares them to the climate model. Finally, 
Section 4 provides discussion and conclusions.

2. Methodology
2.1. Climate Model and Simulations

The physically based climate model considered in this study is the limited area version of the GEM model 
(Côté et al., 1998; Girard et al., 2014), used for numerical weather prediction at Environment and Climate 
Change Canada (ECCC). It employs semi-Lagrangian transport and a (quasi) fully implicit time stepping 
scheme. In its fully elastic nonhydrostatic formulation (Yeh et al., 2002), it uses a vertical coordinate based 
on hydrostatic pressure (Laprise, 1992). Condensation processes are computed by a double-moment micro-
physics scheme (Milbrandt & Yau, 2005). More details on the parameterizations used can be found in Diro 
and Sushama (2019). The land part of the model is represented using the Canadian Land Surface Scheme–
CLASS (Verseghy, 1991, 2011), while the urban regions are represented by the Town Energy Balance (TEB; 
Masson, 2000) model. TEB is a physically based scheme for urban energy budget based on a generalization 
of local canyon geometry. It is a single-layer urban canopy model. Buildings are assumed to be located along 
identical roads leading to the canyon structure. The lengths of the roads are considered to be far greater 
than their widths; any road orientation is possible, and all exist with the same probability. The buildings 
bordering the street canyon are assumed to have the same height and width within a model grid cell. In 
TEB, the urban morphology for each grid cell is defined in terms of the local building and road fractions, 
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building height, building and canyon aspect ratio and roughness length. The radiative characteristics such 
as albedos and emissivity for roofs, roads and walls and thermal properties such as thermal conductivity and 
heat capacity of each roof, road and wall layer are prescribed.

GEM simulations for the period from April 2019 to August 2020 are performed at 2.5 km and 250 m reso-
lutions; the experimental domains for the two resolutions are shown in Figure 1a, with the smaller 250 m 
resolution domain covering the city of Montreal. The predominant land cover for Montreal and surround-
ings is shown on Figure 1b. The super-resolution urban climate simulation at 250 m is driven at the lateral 
boundaries by the 2.5 km GEM simulation, which is in turn driven by ERA5 reanalysis data (Hersbach 
et al., 2020) from the European Centre for Medium-Range Weather Forecasts. GEM outputs for the summer 
months are used as the input data for the deep learning framework.

2.2. Deep Learning Framework

The task of the deep learning super resolution (SR) model is to emulate climate variables at 250 m resolu-
tion from the corresponding climate variables at 2.5 km resolution. In this work, the input is partitioned 
into two parts: the 2.5 km low resolution (LR) climate data ILR, and the high-resolution (HR) auxiliary fields 
AHR (land cover and urban morphology fields). The goal is to train a deep neural network E  with parameters 
θ that can produce realistic HR climate variables YHR:

 , .HR LR HRY I A  (1)

The variables considered in this study (for ILR and YHR) are 2-m air temperature and dew point tempera-
ture, which are essential for estimating heat-stress indices. Twenty-one auxiliary variables, covering build-
ing characteristics, surface types, and land types of the study area constitute AHR. The corresponding HR 
(250 m) and LR (2.5 km) domains consist of 280 × 280 and 28 × 28 pixels (grid cells), respectively. SR is con-
sidered a data generation problem and a deep learning framework based on generative adversarial network 
(GAN), named fused sub-pixel convolutional generative adversarial network (FSPCGAN), is proposed.

2.2.1. Neural Network Structure

To design a neural network for climate variable at SR, a straightforward way is to use pixel-wise loss func-
tions (errors for every grid) such as the mean squared error (MSE) of the reconstruction as an objective 
function. However, it has been found in general image SR studies that the pixel-wise loss function struggles 
to handle the high-frequency details in images—they tend to encourage the model to find an unrealistic 
solution with small MSE (Estrach et al., 2016; Johnson et al., 2016). Moreover, pixel-wise loss functions can-
not ensure the physical consistency of climate fields (Stengel et al., 2020). Recent studies (Ledig et al., 2017; 
Yu & Porikli, 2016) in image SR applications have applied GANs to tackle this problem. The GAN procedure 
encourages reconstructions to move toward regions of the search space with high probability of containing 
physically realistic samples (Goodfellow et al., 2014).

Figure 1c depicts the architecture of the proposed FSPCGAN, consisting of two neural networks—a gen-
erator E  and a discriminator E  . GANs provide a powerful scheme to map LR input fields to realistic HR 
field space. The generator E  (as in Equation 1) attempts to generate synthetic HR climate variables, and the 
discriminator E  attempts to determine whether the generated HR fields are real (i.e., coming from the HR 
simulation) or not. As both input and output are spatial matrices, CNN are used as the key component to 
build both E  and E  .

For the input ILR, two separate CNNs are applied to process LR temperature and dew point fields, respective-
ly, instead of building a single CNN model to reconstruct multiple climate variables like RGB channels in 
image processing. Different CNN layers are used to establish multichannel flow of information and produce 
LR temperature and dew point features, respectively. A concatenation layer is then applied to build a joint 
feature containing information from both temperature and dew point fields. In order to upscale the joint LR 
features to HR (i.e., 10 times larger) feature space, the concatenation is fed to a periodic shuffle layer (Shi 
et al., 2016), which requires far less computational power than directly using the upsampling and/or decon-
volution operators. CNNs are also used for the auxiliary AHR fields to obtain features. The two HR features 
generated from ILR and AHR are added together, and then fed into a regression layer to get final HR output 
YHR, which consists of both temperature and dew point fields.
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Figure 1. (a) Global Environmental Multi-scale computational domain at 2.5 km (red; every fifth grid cell shown) and 250 m (blue; every twentieth grid cell 
shown). The outer thick lines represent the model domain, while the inner thick lines represent the model free domain. Water bodies are shown in dark blue. 
(b) Predominant land cover in the 250 m domain. High-density urban is defined as urban fraction exceeding two thirds coverage, while mid-density urban 
is defined as urban fraction between one third and two thirds coverage. (c) The architecture of the proposed deep learning model. The super-resolution (SR) 
model consists of a generator (upper part) and a discriminator (bottom part). The generator is used to generate high-resolution (HR) temperature and dew point 
from low-resolution inputs, the discriminator is used to distinguish between real HR simulations and SR model outputs.
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There are several points to note in the design of generator E  . First, the periodic shuffle layer used for upscal-
ing often suffers from the checkerboard artifact (Aitken et al., 2017), which can cause unrealistically high 
gradients in the north-south and east-west directions for HR outputs of climate variables. To alleviate the 
checkerboard artifact, the nearest neighbor strategy (Aitken et al., 2017) is adopted to initialize the periodic 
shuffle layer. In addition, a total variation term LTV is added to the loss function to ensure spatial smoothness 
in adjacent pixels:

2 2

2
, ,

1 , 1, , , , , 1 , , .
2 280

HR HR HR HR
TV

c i j
L Y c i j Y c i j Y c i j Y c i j                   

 (2)

Second, to ensure physical consistency, constraints are imposed on the generator during training to ensure 
that the generated dew point does not exceed 2-m temperature.

2.2.2. Training Strategy

In this work, the Wasserstein GAN (WGAN) framework (Arjovsky et al., 2017) is used, which is an improved 
version of original GAN. In WGAN, the discriminator network E  is a K-Lipschitz continuous function to 
compute the Wasserstein distance between the real probability and the generated probability. To keep the dis-
criminator K-Lipschitz continuous, its parameters are confined to a range (−c, c). To produce more realistic 
temperature fields, the discriminator E  and generator E  are trained against each other iteratively over time. 
In WGAN, the training loss for discriminator is the Wasserstein distance LW between the generated climate 
variables and those from HR simulation. During training, parameters of the discriminator are confined by 
clipping values, i.e., [ − 3, 3]. More details on the Wasserstein distance can be found in (Arjovsky et al., 2017).

For the generator E  , the final training loss is defined as
,MSE TV WL L L L     (3)

where λ and γ are loss weights. LMSE quantifies the total reconstruction error for both temperature and dew 
point fields and LTV is the aforementioned total variation loss to alleviate the checkerboard artifact.

2.3. Deep Learning Experiments and Baseline

To evaluate the benefits of using auxiliary fields, adversarial training and physical constraints, four deep 
learning variants are evaluated in this work: (a) SPCNN (sub-pixel convolutional neural network), (b) FSP-
CNN (fused sub-pixel convolutional neural network), (c) FSPCGAN-S (S refers to separate models) and 
(d) FSPCGAN (see Figure 1c), with the first three being special cases of the proposed FSPCGAN model. 
SPCNN and FSPCNN differ from FSPCGAN in that they do not have the discriminator component. Fur-
thermore, SPCNN does not consider auxilliary variables, while FSPCNN takes them into account. FSPC-
GAN-S differs from FSPCGAN in that two separate models are developed for temperature and dew point 
fields in FSPCGAN-S, without joint training.

The output frequency for the LR and HR GEM simulations (cf. Section 2.1) is 1 hr. Of the 3,600 outputs from 
April 1st, 2019 to August 29th, 2019, 3,240 samples are randomly picked as the training data set, and the 
remaining 360 samples from the same period are used as the validation data set. The 2928 samples from May 
1st, 2020 to August 31st, 2020 are used as the test data set. To illustrate the superiority of deep learning over 
traditional methods, a simple linear Cokriging model is also considered. The mean absolute error (MAE) 
and root mean squared error (RMSE) are used to measure the reconstruction performance of different deep 
learning variants and the Cokriging baseline:
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where HR
nE o  denotes the nth GEM-simulated ground truth, HR

nE y  denotes the nth SR model outputs and N is 
the sample size.

For the deep learning models, 3-layer CNNs are used to capture LR temperature/dew point features. The 
convolutional kernel of the first layer is 5 × 5, and the kernels of the following two layers are both 3 × 3. 
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The number of feature maps for the three CNN layers are 128, 128, and 64, respectively. Two-layer CNNs 
are used to process HR auxiliary fields; the kernels of the first and second layers are 5 × 5 and 3 × 3, respec-
tively. The number of feature maps for auxiliary CNNs are 32 and 64 for the two layers. The discriminators 
for FSPCGAN-S and FSPCGAN are built upon 4-layer CNNs. For the discriminators, the convolutional 
kernel of the first layer is 5 × 5, and all the three following layers use a 3 × 3 kernel. The number of feature 
maps are 128, 128, 64, and 64 for the four layers. The rectified linear unit function is used as the activation 
functions for all convolutional layers. The RMSprop optimization strategy is used to train SPCNN, FSPCNN 
and the generators of FSPCGAN-S and FSPCGAN, and the learning rate is set to 0.0001. RMSprop is also 
used for discriminators of FSPCGAN-S and FSPCGAN, with a learning rate of 0.00005 for training. The loss 
weights λ and γ in Equation 3 are set to 0.001 and 1, respectively. All the deep learning models use the same 
validation data set, and training is stopped if the MAEs with respect to the validation set do not improve in 
100 training episodes.

3. Results
Table 1 compares the MAE and RMSE of temperature and dew point across the test set for each SR method. 
All deep learning methods significantly outperform the Cokriging model with respect to these two metrics. 
FSPCNN gives lower errors than SPCNN, which indicates that deep SR models can take advantage of the in-
formation from auxiliary fields such as building fractions and land cover to improve their SR performance. 
However, the FSPCGAN-S with an adversarial training scheme results in higher errors than FSPCNN and 
SPCNN. This is because the adversarial training strategy favors more physically consistent data and en-
courages the generator to insert more small-scale features into SR results (Stengel et al., 2020). Moreover, 
FSPCGAN gives higher errors than the other three models. It jointly produces HR temperature and dew 
point, and its discriminator forces the relationship between SR temperature and dew point to be consistent 
with training data. This constraint causes FSPCGAN to give higher pixel-wise errors since they are hard to 
infer from training data. The auxiliary fields information and adversarial training strategy also cause higher 
variance during training (the raw SPCNN model gives the lowest variances in Table. 1), which indicates that 
they make deep learning SR methods harder to converge. Lastly, whether deep learning models can learn 
the relationship between two physically related climate variables is investigated by looking at the perfor-
mance with respect to relative humidity rh, which can be inferred from temperature t and dew point d as

( )
( )( )100

cb d t
c t c drh e


  (5)

with b = 17.625 and c = 243.04. Of the four deep learning models, only FSPCGAN jointly uses both dew 
point and temperature as inputs and outputs, other models process them separately. The inferred relative 
humidity is compared to that obtained from the GEM simulation. The resulting MAEs and RMSEs for the rh 
data are given in the last column of Table 1. All deep learning models still significantly outperform Cokrig-
ing on humidity data. Interestingly the pixel-wise errors of FSPCGAN for rh are lower than other models 
that separately process dew point and temperature. This implies that FSPCGAN can learn the physical 
relationship between temperature and dew point. Another finding is that FSPCGAN-S gives higher errors 

Temperature (°C) Dew point (°C) Relative humidity (%)

Models MAE RMSE MAE RMSE MAE RMSE

Cokriging 1.2818 1.8468 1.1203 1.6405 7.0178 9.6141

SPCNN 0.7900 ± 0.0206 1.0959 ± 0.0216 0.9703 ± 0.0236 1.4362 ± 0.0265 5.3736 7.3140

FSPCNN 0.7892 ± 0.0350 1.0851 ± 0.0369 0.9674 ± 0.0187 1.4326 ± 0.0294 5.1908 7.1213

FSPCGAN-S 0.7920 ± 0.0340 1.0901 ± 0.0364 0.9698 ± 0.0228 1.4158 ± 0.0274 5.6680 7.5672

FSPCGAN 0.8828 ± 0.0601 1.1996 ± 0.0625 0.9940 ± 0.0310 1.4308 ± 0.0345 5.1496 7.0700

Note. The bold values used to indicate the best performance. MAE, mean absolute error; RMSE, root mean squared 
error.

Table 1 
Average Errors and Their Standard Deviations for Temperature and Dew Point for the Last 50 Learning Steps; and for 
Inferred Relative Humidity for the Last Step
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than SPCNN and FSPCNN. This could be caused by the inserted small features from adversarial training. 
Those features potentially violate the physical relationship between dew point and temperature. Moreover, 
FSPCGAN avoids unrealistic (above 100%) humidity values due to imposed constraints between dew point 
and temperature, while other models occasionally produce unrealistic values. These results demonstrate 
that jointly training correlated climate variables is useful and necessary.

To qualitatively validate the results of different SR models, the temperature, dew point and inferred rh of 
different models are shown in Figure 2. It should be noted that the HR ground truth only follows the LR 
input data at the boundaries, and the HR simulation has a significant degree of freedom inside the bound-
aries, thus it can be significantly different from LR simulation. This makes the SR tasks more challenging 
than those in existing works (Stengel et al., 2020). In Figure 2, HR truths contain many small-scale features 
that are not reproduced by the LR simulation. The simple Cokriging method entirely smooths out those 
features, as expected. FSPCNN with auxiliary field information can additionally introduce more small-scale 
features to the outputs compared with SPCNN. Finally, the SR results from FSPCGAN-S and FSPCGAN 
are associated with more refined small-scale features. Results of FSPCGAN qualitatively appear to be more 
comparable with the HR simulation, although it sometimes gives higher pixel-wise errors than other deep 
learning models. The above is also confirmed by semivariogram analysis (not shown).

The behavior of temperature and dew point is expected to be strongly dependent on the underlying land 
cover (e.g., water, vegetation, urban), and higher heat stress is expected over urbanized areas. Thus, the 
performance of deep learning methods needs to be assessed for each of the HR grid cells (pixels). To achieve 
this, the RMSE with respect to the HR truth is calculated for FSPCGAN and compared to the LR data (Fig-
ure 3a). It can be seen that the LR data performs quite well (RMSE <2°C) in regions with relatively homo-
geneous land cover (e.g., the southeast region), while exhibiting higher errors (especially for temperature) 
over highly heterogeneous regions such as the Montreal metropolis and adjacent river areas. It is for these 
heterogeneous regions that deep learning methods such as FSPCGAN are able to produce super-resolution 
data much closer to the HR truth, often reducing RMSE by over 50% for temperature and around 20% for 
dew point. The relatively larger improvements for temperature can be explained by the fact that tempera-
ture has a stronger dependence on land cover (which is among the auxiliary fields provided to FSPCGAN) 
and also because of the already strong performance of the LR simulation for dew point, which leaves only 
little room for further improvement.

In addition to time-averaged metrics such as RMSE, assessing the performance of deep learning methods 
in reproducing extreme events is of utmost importance, given the large impacts that such events can entail. 
As this study focuses on summertime temperatures, an extreme of interest is the number of hours during 
which heat stress is experienced. As in previous studies (Teufel et al., 2021), a hot hour can be defined as 
an hour where the temperature exceeds 30°C. A potentially better approximation to heat stress can be ob-
tained using the humidex, which combines temperature and humidity information (Davis et al., 2016; Ho 
et al., 2016). Figure 3b shows the performance of both the LR simulation and FSPCGAN in modeling the 
number of hot hours over the study region when compared to the HR truth. While some of the finest details 
in the HR truth are not reproduced by FSPCGAN, it clearly outperforms the LR simulation and demon-
strates considerable skill in capturing both the magnitude and location of extreme temperatures.

4. Discussion and Conclusions
This study demonstrates that deep learning can be a highly effective way to support numerical climate 
simulators in the generation of super-resolution information. A deep learning framework that increases the 
resolution of temperature and dew point from 2.5 km to 250 m (i.e., by a factor of 10) is presented. The deep 
learning framework fully considers the relationship between variables and dependencies on urban mor-
phology fields. The model is trained on 2019 summer simulation data, and its performance is tested with 
respect to unseen data for the 2020 summer period. Results show that the deep learning model is capable of 
capturing both the magnitude and location of extreme temperatures.

This study is to be seen as a proof of concept, in which it is shown that in principle it is possible to let a deep 
neural network generate high-resolution climate fields for multiple interrelated variables. One could train 
a deep learning model on a relatively short time period with high resolution data (250 m), following which 
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Figure 2. GEM simulated fields at low-resolution and high-resolution and super-resolution results obtained with co-
kriging and deep learning models for (a) temperature, (b) dew point and (c) relative humidity at one time step.
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the deep learning model can be fed with low resolution climate data to generate the high resolution data. 
Given the high flexibility of deep learning in capitalizing physical relationships across multiple variables 
and dependencies on urban morphology fields, the next natural step for future studies would be to apply 
the framework to other complex variables, such as precipitation, which involves more complex dynamics, 
and also for other regions and periods. Still, the principle opens up the possibility of a new type of super 
resolution climate simulation framework, which could also be used to refine operational weather forecasts 
over cities at short and medium ranges.

Figure 3. (a) Root mean square error (RMSE) in temperature (top row) and dew point (bottom row), with respect 
to the high-resolution (HR) truth for low resolution data (first column) and fused sub-pixel convolutional generative 
adversarial network (FSPCGAN) (second column). The relative difference in RMSE is also shown (third column). Red 
colors denote lower RMSE in the low resolution data, while blue colors denote lower RMSE in FSPCGAN. (b) Number 
of hours with temperature above 30°C (top row) and humidex above 35 (bottom row) for the May–August 2020 period, 
from low resolution data (first column), HR truth (second column) and FSPCGAN (third column).
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Data Availability Statement
All data used for training the deep learning models can be accessed at: https://zenodo.org/record/5008611#.
YNDww_KSlPY.
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