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Abstract
Inferring trip destination in smart card data with only tap-in control is an important appli-
cation. Most existing methods estimate trip destinations based on the continuity of trip 
chains, while the destinations of isolated/unlinked trips cannot be properly handled. We 
address this problem with a probabilistic topic model. A three-dimensional latent dir-
ichlet allocation model is developed to extract latent topics of departure time, origin, and 
destination among the population; each passenger’s travel behavior is characterized by a 
latent topic distribution defined on a three-dimensional simplex. Given the origin station 
and departure time, the most likely destination can be obtained by statistical inference. 
Furthermore, we propose to represent stations by their rank of visiting frequency, which 
transforms divergent spatial patterns into similar behavioral regularities. The proposed des-
tination estimation framework is tested on Guangzhou Metro smart card data, in which 
the ground-truth is available. Compared with benchmark models, the topic model not only 
shows increased accuracy but also captures essential latent patterns in passengers’ travel 
behavior. The proposed topic model can be used to infer the destination of unlinked trips, 
analyze travel patterns, and passenger clustering.

Keywords Public transit · Smart card data · Destination inference · Topic model · 
Passenger clustering

Introduction

Origin and destination (OD) matrix is an essential input for transit planning and opera-
tion. Most transit agencies have been relying on travel surveys to collect representative OD 
information. However, conducting such a survey with a reasonable scale is not only costly 
but also time-consuming. With the recent advances of intelligent transportation systems, 
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researchers and practitioners have started taking advantage of the transit operation data and 
smart card data for better planning and operation practices (Pelletier et al. 2011).

Smart card systems are initially designed for the purpose of automatic fare collection 
(AFC). When the system has both tap-in and tap-out controls (e.g., using a distance-based 
transit fare scheme), the full itinerary (boarding time/station and alighting time/station) of 
each trip can be registered. However, most smart card systems across the world adopt a 
single fare scheme with only tap-in validation, and the alighting information (time/station) 
is essentially unknown. Inferring the alighting stations is a crucial problem in obtaining the 
OD matrix from these smart card systems.

Trip destination estimation in smart card data has always been a hot issue. Barry et al. 
(2002) proposed two assumptions to address this issue: (1) the alighting station of a trip 
is very likely to be the boarding station of the immediate next trip; (2) the last alighting 
station of a day is usually the first boarding station of the same day. This type of “rule-
based” model soon became the workhorse algorithm for smart card destination estimation. 
Depending on the data, current algorithms can obtain around 60% to 85% trips’ destina-
tions; these trips are often called linked trips in the literature, and the rest un-inferred trips 
are referred to as unlinked trips. Without the information from consecutive trips, the des-
tination estimation of unlinked trips is more challenging. Existing methods address this 
problem by seeking similar trips in the passenger’s historical trips; we refer them as indi-
vidual-history-based models. Such as He and Trépanier (2015) used the spatial and tempo-
ral kernel density probability of passengers’ trips and get an additional 10% estimation for 
unlinked trips.

The prediction of unlinked trips is challenging without the help of the trip-chain conti-
nuity information. The solution lies in the regularity of human mobility. As explained by 
González et al. (2008), Song et al. (2010), human movement follows certain regularity and 
is highly predictable. However, there still lacks an appropriate framework to infer the miss-
ing destination using the mobility regularity. To address this issue, this paper attempts to 
build an integrated model that estimates the missing destinations drawing on the common 
mobility patterns among the population. We establish a probabilistic topic model for smart 
card data by making an analogy with the latent dirichlet allocation (LDA) model (Blei et al. 
2003). We assume transit trips among the population can be summarized in a few latent 
topics over departure time, origin, and destination. Every passenger is characterized by a 
latent topic distribution and the whole population share the topic-word distributions for 
departure time, origin and destination. To share more information among different passen-
gers, we represent each station by each passenger’s rank of visiting frequency, as against to 
directly using the station ID. A case study is performed on Guangzhou Metro data, where 
the tap-out data is used as the ground truth to test different models. Results show our topic 
model has improved accuracy compared with individual-history-based models. We further 
demonstrate passengers’ latent topic distribution is a useful feature for passenger cluster-
ing, commuter identification, and travel pattern mining.

The remainder of the paper is organized as follows. “Literature review” section briefly 
reviews the current research on smart card data destination inference and transit pattern 
mining. “Methodology: topic model for destination inference” section elaborates the topic 
model for transit trips, the Gibbs sampling for model inference, and the destination infer-
ence in ranked stations. The case study on Guangzhou Metro will be shown in “Case 
study” section, where the destination inference will be compared with individual-history-
based models; the model interpretation and the passenger clustering will be demonstrated 
in “Case study”. Finally conclusions and discussions are summarized in “Conclusions and 
discussion” section.
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Literature review

Destination inference in smart card data

Destination inference is an important problem in smart card data. Existing methods pri-
mary take advantage of the continuity of trip chains, and infer the destinations based on 
assumptions or rules. In a very first study, Barry et al. (2002) proposed that the destination 
of a trip can be inferred by the origin of the immediate next trip, and they assumed the 
last destination of a day is often the first origin in the same day. Since then, many refined 
models have been proposed based on similar assumptions. Trépanier et al. (2007) imposed 
a distance constraint between consecutive trips, and they further assumed the last destina-
tion of a day can also be inferred by the first origin in the next day. Munizaga and Palma 
(2012) proposed to use generalized time instead of distance in destination inference. Fur-
ther, Sánchez-Martínez (2017) constructed a generalized disutility minimization objective 
to determine the paths and transfers between the origin and destination. Research based 
on similar rule-based methodology has become the mainstream, and more research can be 
found in Zhao et al. (2007), Wang et al. (2011), Gordon et al. (2013), Alsger et al. (2016), 
Nunes et al. (2016). Depending on the data, the rule-based method can accomplish around 
60% to 85% of the destinations; trips of which the destinations can be inferred by the rule-
based model are often called linked trips.

For the O-D of unlinked trips, whose destination cannot be inferred by rule-based mod-
els, one treatment is to scale the O-D of linked trips by some methods (see e.g., Munizaga 
and Palma 2012; Gordon et al. 2018). This approach assumes the destination distribution 
of unlinked trips at each origin is the same as the linked trips, which is unverified. On the 
other hand, the destinations of unlinked trips can be estimated by historical similar trips 
(individual-history-based model), similar to supervised learning with labeled data. Such as 
Trépanier et al. (2007) defined a similar trip as a trip on the same route with similar depar-
ture time in the previous several days. He and Trépanier (2015) used spatial and temporal 
kernel density probability estimated by historical trips to infer the destination of unlinked 
trips. Zhang et al. (2015) conducted an interesting study, where a collaborative space align-
ment framework was presented to reconstruct smart card trips. Recent studies attempted 
to use (deep) neural networks to infer trip destinations (Jung and Sohn 2017; Assemi et al. 
2020). These studies were based on smart card systems with full information and extensive 
features (e.g. time and location, land-use features of stations). Experiments showed promis-
ing results, while the large number of labeled destinations are essentially unavailable for a 
real tap-in-only system.

To summarize, existing research has developed various algorithms based on the trip 
continuity feature to estimate the destination of linked trips. The destination estimation of 
unlinked trip relies on historical similar trips. This paper provides a whole new approach to 
infer the destination of unlinked trips by a topic model. The proposed model is not only a 
prediction model but also a generative model that captures individuals’ behavioral patterns.

Transit pattern mining

There has been a large body of literature on passengers’ travel behavior patterns. The travel 
patterns are usually characterized by certain features. A series of analyses (such as com-
muter identification, passenger clustering, and pattern evolving) can then be conducted 
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using these features. Next, we briefly review related literature based on how these features 
are obtained.

In many studies, the features for travel patterns are designed based on domain knowl-
edge. For example, Morency et al. (2007) defined two indicators to measure passengers’ 
spatial and temporal variability. Then a k-mean algorithm was conducted to cluster pas-
sengers. In another research, Ma et al. (2013) designed four features based on how often 
did a passenger repeatedly visits the same or adjacent places on a multi-day basis; these 
features can be used to identify regular passengers. A similar approach is also applied in 
Ma et al. 2017. Mohamed (2014) established a temporal profile by passengers’ travel time 
on a weekly basis to analyze the travel patterns. He et al. (2018) directly used time series 
on transit smart card activities’ data as features, and used the distance between time series 
for passenger clustering.

On the other hand, the travel patterns can also be represented by latent features that 
are learned from data; the topic model developed in this paper also falls in this catalogue. 
For example, Goulet-Langlois et  al. (2016) used principal component analysis (PCA) to 
extract eigen-patterns from passengers’ multi-week activity sequences. Briand et al. (2016) 
applied a mixed Gaussian model to extract latent features to mining passengers’ temporal 
travel patterns. Based on the same method, Briand et al. (2017) further analyzed the year-
to-year pattern changes in a public transportation system. Zhao et al. (2020) applied a topic 
model to discover latent activity patterns from smart card data, which is very relevant to 
our research. Zhao et  al. (2018) and this paper both extend the LDA for travel behavior 
mining. The main difference is that we organize the latent features in a three-dimensional 
manner, which captures the interaction of spatial and temporal topics.

Besides the public transportation domain, topic models have been widely applied for 
mobility mining. For example, Hasan and Ukkusuri (2014) classified individuals’ activity 
patterns by applying LDA to geo-location data collected from Twitter. Sun and Axhausen 
(2016) applied a probabilistic tensor factorization to smart card transactions to understand-
ing urban mobility patterns. Fan et al. (2016) applied LDA to mobile phone call data, and 
further developed a Hidden Markov Model for complete missing mobility data. Sun et al. 
(2019) developed a two-dimensional LDA on license plate recognition data, where the spa-
tial and temporal topics are modeled separately, and their interactions are characterized in 
a two-dimensional simplex. We applied the same methodology as Sun et  al. (2019) and 
extend it to smart card data with three-dimensional features (origin, destination, and time).

Methodology: topic model for destination inference

This section details the probabilistic topic model for trip destination inference in smart card 
data. The objective is to infer the unknown trip destination in a tap-in-only system. A large 
portion of the destinations of linked trips could be inferred by rule-based models (Barry 
et al. 2002; Trépanier et al. 2007; Munizaga and Palma 2012); some trip surveys could also 
provide a sample of complete trip information (Trajet 2019). We can train the proposed 
topic model by those trips with complete (ground truth or inferred) itineraries. Next, the 
destinations of unlinked trips could be inferred by the trained topic model.
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Model formulation

A smart card trip could be characterized by a three-element tuple (wt,wo,wd) representing 
the departure time, origin, and destination; where wt is assumed to be a discrete variable 
in 1-hour intervals. Then, all the historical trips of a passenger u can be represented as 
�u = {(wt

i
,wo

i
,wd

i
) ∶ i = 1,… ,Nu;w

t
i
∈ {1,⋯ , T}; wo

i
,wd

i
∈ {1,⋯ , S}} ; where Nu is the 

total number of trips for passenger u, T is the number of possible departure hours, and S is 
the number of boarding/alighting locations.

The LDA model in NLP assumes there are several topics (e.g. sport, and cooking) 
among the corpus, the probability for each word’s occurrence varies from topic to topic 
(e.g. the probability for the word “basketball” occurs in the sport topic is higher than 
which in the cooking topic). A document is characterized by a mixture of topics, which 
explains the probability of each word’s occurrence in the document. By making an analogy 
to the LDA model, we treat each trip (wt,wo,wd) as a word and �u as a document (a bag 
of words). Thus, all the trips belonging to a passenger compose a document with each trip 
being regarded as a word, each passengers trips are characterized by a mixture of latent 
topics.

The traditional LDA cannot directly model metro trips, because of the three interde-
pendent attributes of a trip (i.e. time, origin and destination). A common solution is to 
combine different attributes into one dimension with the vocabulary size of T × S × S , such 
as in Hasan and Ukkusuri (2014), Fan et al. (2016). The main drawback of this approach 
is that it considerably increases the vocabulary size, while the new combined words are 
sparse with many unobserved/unlikely trips. Moreover, the interdependency between origi-
nal attributes is lost (e.g., two trips with the same origin and destination but different times 
can become unrelated words). To address this problem, we use an innovative method that 
expands the latent topics into a three-dimensional tensor, similar to the probabilistic tensor 
factorization (Sun and Axhausen 2016; Sun et al. 2019). By increasing the dimension of 
latent topics, we have three types of topic-word distributions, which avoids the large vocab-
ulary set and captures inter-dependencies of different types of words in the latent space.

The latent topic is organized as a three-dimensional tensor Z ∈ ℝ
J×K×L , where J, K, and 

L are the number of latent topics of time, origin, and destination respectively. The element 
zj,k,l of tensor Z corresponds to the jth temporal topic zt

j
 , the kth origin topic zo

k
 , and the lth 

destination topic zd
l
 . Each passenger’s trips are characterized by a Multinomial distribution 

over latent topics Z (the topic distribution), parameterized by �u . Given a latent topic zj,k,l , 
the topic-word distributions for departure time, origin, and destination are Multinomial dis-
tributions parameterized by �zt , �zo , and �zd respectively. The overall picture of the model 
can be clearly depicted by a graphical model shown in Fig.  1; where � , � , � , and � are 
parameters for Dirichlet priors; U is the number of passengers. We describe the generative 
process in Fig.  1 follows:

• Draw topic distribution for each passenger �u ∼ DirichletJ×K×L(�).
• Draw topic-time distribution for each time topic �j ∼ DirichletJ(�).
• Draw origin distribution for each origin topic �k ∼ DirichletK(�).
• Draw destination distribution for each destination topic �l ∼ DirichletL(�).
• For each passenger u, for each trip record:

– Draw latent topic z ∼ Multinomial(�u).
– Obtain zo , zd , and zt by z.
– Draw wt ∼ Multinomial(�zt ).
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– Draw wo ∼ Multinomial(�zo ).
– Draw wd ∼ Multinomial(�zd ).

We apply Multinomial distribution to departure time by discretizing time into 1-h intervals. 
This is a reasonable simplification and has been widely used in literature (Hasan and Ukkusuri 
2014; Sun and Axhausen 2016; Sun et al. 2019). Continuous distributions, such as Normal 
and Log-Normal distributions (Zhao et  al. (2018), are more refined in time representation, 
but they are also more computational costly and to some extent restrictive in the shape of the 
distribution. Considering 1-hour resolution is normally enough to distinguish different travel/
activity patterns, this paper uses the discrete representation of time.

Model inference

The model inference involves estimating the parameters for latent topic distribution of each 
passenger and the topic-word distribution of each topic. In the generative process, each trip 
is generated from a latent topic z, which is unobserved. We use a collapsed Gibbs sampling 
algorithm Griffiths and Steyvers (2004) to iteratively sample the topic for each trip by the con-
ditional probability shown in Eq. ( 1):

where �(⋅)

−i
 and �(⋅)

−i
 are trip attributes and latent topics for all other trips except trip i; N(⋅)

(⋅)
 

denotes the number of trips that satisfy the condition listed in the subscript and the super-
script, note that the current trip i is excluded when counting N.

The sampling procedure will converge after sufficient iterations, by then we can estimate 
the parameters in topic distributions and topic-word distributions by Eq. 2:

(1)

P(zt
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Fig. 1  Plate notation for the 
graphical model

z

zd

zo

zt

wd

wo

wt

ω

ψ

ϕ

θα

η

γ

β

J

K

LNu

U



Transportation 

1 3

Destination inference and station‑to‑rank transformation

Having estimated all the parameters in the model, we can infer the missing destination for 
a trip with only the origin and the departure time observed. According to the Bayes’ theo-
rem, the probability for passenger u alighting at a location d given the departure time t and 
the boarding location o takes the form:

Next, the most likely destination of a trip is the one that takes the highest probability in 
Eq. 3.

By now we have shown the complete topic model for destination inference, but there is 
a final impediment that prevents the model from giving a good destination estimation—the 
giant heterogeneity among passengers’ spatial patterns. In essence, the topics of an LDA 
model are learned from the word co-occurrences across different documents. However, 
the origin-destination set is generally diverse from person to person (few word co-occur-
rences), which means a very large number of spatial topics are required to capture the spa-
tial heterogeneity of the entire population. The large latent space not only fails to extract 
representative patterns among individuals but also increases the number of unknown 
parameters.

To address this problem, we do not use unique IDs for stations, instead, we label loca-
tions by the frequency-rank in each passengers’ historical trips. Studies have shown the 
frequency of individuals’ historical locations follows Zipf’s law González et  al. (2008), 
indicating most of the trips of a passenger are between several frequently visited locations. 
Therefore, the first several ranks can well characterize a person’s travel behavior. Specifi-
cally, denote ri

u
 to be the rank (by the order of visiting frequency) of station si in all the 

historical origins of passenger u. We transform each passenger’s visited locations into the 
rank representation and store a mapping function Mu(r

i
u
) → si to restore real stations. By 

doing this, the diverse spatial patterns are essentially transformed into similar behavioral 
regularities (e.g., travel from the most visited station to the second most visited station). 
The same-ranked location for different passengers’ does not correspond to the same real 
stations, but represents a similar degree of importance of these stations to these passengers. 

(2)

�t,j =
Nwt=t
zt=j

+ �

Nzt=j + T�
,
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Nwo=o
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(3)
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We build the topic model and infer the destination in the ranked reference; the estimation 
for real destination is then retrieved by the mapping function Mu.

Case study

We use the Guangzhou Metro smart card data—a tap-in and tap-out system—to examine 
the proposed topic model. As the topic model requires a portion of complete itineraries 
(training set) to learn passengers’ travel patterns, we will investigate our model under two 
scenarios: 

1. using a ground truth training set;
2. using an estimated training set.

In scenario 1, we randomly select 70% trips and preserve the real destinations, as a 
training set; the destinations inference is tested on the rest 30% data. Scenario 2 is a more 
realistic case where the ground truth destinations are unknown. We train the model with 
the destinations inferred by rule-based models (Trépanier et al. 2007) and demonstrate our 
model’s performance under the “noisy” training set. The case study part is organized as 
follows, we will first introduce the data set, hyper-parameters, and baseline models, next 
test the destination inference accuracy, interpret the latent patterns, and finally present an 
application of passenger clustering.

Guangzhou Metro data

Guangzhou Metro is one of the busiest metro systems in the world. As of August 2019, 
Guangzhou Metro has 14 operating lines with a total length of 478 km. It is the third-larg-
est metro system in China, after Beijing and Shanghai. The average daily ridership exceeds 
8.6 million, taking over 50% of the ridership in the public transportation (Guangzhou 
2019). Except line 9, 14, APM, and THZ1, our data covers other 11 lines of Guangzhou 
Metro with 159 stations from July 1st to September 30th, 2017. The metro operates 19 h 
per day from 5:00 to 24:00. Therefore, the vocabulary size for time is 19, for origin and 
destination is 159.

Guangzhou Metro is a tap-in and tap-out system with both origin and destination regis-
tered, we can compare the estimated destination with the real destination to test the infer-
ence accuracy. There are single pass, day pass, Yang Cheng Tong and Linnan pass (includ-
ing various subclasses for students, elderly and disabled people), and digital tickets on 
smartphone apps. Around 1/3 trips are accomplished by single or day pass, the destinations 
of these short-term users are barely estimable because of the lack of information. We only 
focus on the passengers with a minimum of 20 observations in the 3 months; later we will 
discuss the effect of the number of observations to the estimation accuracy. We showcase 
our model in 10,000 randomly selected passengers. The total number of selected trips is 
667,033, which means on average each person took 67 trips in the 3 months.

As discussed in  “Destination inference and station-to-rank transformation” section, 
instead of station IDs, we train our model by each passenger’s rank of stations. A pre-
liminary analysis of the data shows that the first several ranks can capture most of the 
trips. Figure  2a shows the rank r of stations and the visiting probabilities p(r) in a log-
log plot. It can be found that the visiting probability drops significantly as the rank gets 
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large. Further, the relation can be approximated by the Zipf’s law p(r) ∼ r−� with the expo-
nent term � relates to the number of visited stations N  (Hasan et al. 2013). When apply-
ing � = 3.57N−0.38 , p(r) and r can be approximated by a single distribution, shown in the 
inserted figure. Similar to Hasan et al. (2013), the rank 2 station deviates from this relation, 
showing higher visiting probability. This indicates that there is a bi-central mobility pattern 
in metro usage compared to the common Zipf’s law (González et al. 2008).

Figure  2b shows the histogram for the number of different stations visited by each pas-
senger. We can find most passengers visited between 5 and 20 different metro stations 
in the 3-month period; the number of people who visited more than 20 stations tails off. 
Therefore, we cut off the frequency-rank at 20, marking all stations ranked larger than 20 
as 20. By doing this, each passenger’s spatial vocabulary size is aligned at 20. Because the 
possibility of choosing cut stations is very low, as long as the cut-off point is not too small, 
the choice of cut-off point has little effect to the performance of our model. Representing 
stations by rank significantly decreases the number of latent topics needed on the spatial 
dimension.

Hyper‑parameters

There are two types of hyper-parameters in our models—the number of latent topics and 
Dirichlet priors. In literature, the number of latent topics is often determined by perplexity, 
which measures the average likelihood of test data set (Blei et al. 2003; Hasan and Ukku-
suri 2014). In our context, we use the destination inference accuracy in the test set to select 
the number of topics. We perform a grid search over J = [3, 4, 5] and K, L = [2, 3, 4, 5] 
and select the best configuration by the minimal destination inference error, and we 
prefer a smaller model when the errors are close. Based on the result, we choose J = 4 
and K = L = 4 for scenario 1, J = 4 and K = L = 3 for scenario 2; more topics do not 
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Fig. 2  The probability of visiting different stations. a For passengers that have been observed to visit 5 10, 
20, and 30 different stations, the rank of the stations (in the order of the visit frequency) and the visiting 
probabilities in a log–log scale. The insert figure shows that the four groups of p(r) can be well approxi-
mated by p(r) ∼ r−� , when apply � = 3.57N−0.38 . b The histogram for the number of different stations vis-
ited by each passenger, in the 10,000 passengers



 Transportation

1 3

contribute to the inference accuracy. Note that the number of spatial topics for scenario 2 
is less than scenario 1. This is because the training set of scenario 2 is estimated from the 
rule-based models, the noisy training set prevents the model from learning more patterns.

There are four Dirichlet priors in our model. These hyper-parameters affect the smooth-
ness of the Multinomial distribution; a larger value will increase the smoothness. Besides, 
we found hyper-parameters (within a range) have little effect to destination inference accu-
racy, which is more relevant to the peak rather than the smoothness of distributions. We 
adopt the typical value in NLP and set � = � = � = 0.1 (Griffiths and Steyvers 2004). The 
hyper-parameter � affects the smoothness of individuals’ topic distribution. Considering it 
is rare for an individual to possess a wide range of travel patterns; we apply a small value 
� = 5∕(J × K × L) to learn a relatively sparse topic distribution that captures individual’s 
specific character. Note a typical setting for � in NLP is 50/(number of topics) (Griffiths 
and Steyvers 2004).

Benchmark models

We compare our topic model with five benchmark models. For the first four benchmark 
models, we predict the destination by the most visited destination in a passenger’s histori-
cal similar trips. The four kinds of “similar trips” are defined as follows:

• (SO) Trip with the same origin.
• (ST) Trip with the same departure time (1-hour interval).
• (SOT_O) Trip with the same origin and departure time, if no such trip, use SO.
• (SOT_T) Trip with the same origin and departure time, if no such trip, use ST.

We adopt the method proposed by He and Trépanier (2015) as the fifth benchmark model, 
where the destinations of unlinked trips are predicted by the multiplication of spatial and 
temporal kernel density at potential destinations. This method was developed for bus sys-
tems with all potential destinations on the same bus line as the origin. Because the potential 
destinations of metro systems could be on different lines, we extend the potential destina-
tions with historical destinations that have the same origin as the current trip, and replace 
the spatial kernel density by the visiting frequency. We choose 1 h as an appropriate band-
width for the temporal kernel density estimation after comparing different alternatives. We 
refer to this model as the “kernel-based” method in the following text. When any of the 
above benchmark models fails, the destination is predicted by the most visited destination 
of the corresponding passenger.

Scenario 1: using ground truth training set

In scenario 1, we randomly select 70% of the trips as the training set, where the ground 
truth destinations are known. Table  1 shows the destination inference accuracy of dif-
ferent models in both training and test sets. As the Gibbs sampling depends on the initial 
value, the accuracies of topic models are means of 50 runs and the standard deviations 
are shown in parentheses. It can be found that our rank-based topic outperforms the best 
benchmark models (SOT_O) around 2% in the test set. On the other hand, the no-rank 
topic model—directly uses station ID in the model—has the worst accuracy, even under 
a very large number of topics. Our station-to-rank preprocessing greatly improves the 
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inference accuracy and reduces the latent parameters. As expected, the accuracy of the 
training set is slightly higher than the test set.

As the topic model requires some historical trips for training, we want to evaluate the 
effect of an individual’s number of training trips to the prediction accuracy. Besides, it 
is also interesting to investigate the relationship between the destination inference and 
individuals’ travel regularity. There are many metrics to measure individual’s travel reg-
ularity, such as entropy Scheiner (2014), actual entropy Song et al. (2010), and entropy 
rate Goulet-Langlois et  al. (2017). Entropy measures the randomness of a probability 
distribution. In metro trips, the entropy of passenger u is defined as

where pu(i) is the historical probability that location i was visited, Nu is the total number 
of visited stations. The larger the entropy, the more random the distribution, and harder to 
predict. Unlike the actual entropy and the entropy rate, the order of the trips does not affect 
the entropy. As the LDA is a bag-of-words model regardless of the order of words, we use 
entropy to reflect an individual’s travel regularity and evaluate its relation to the accuracy 
of destination inference.

Figure  3 illustrates the destination inference accuracy under different numbers of 
training trips and entropy levels. Overall, the number of training trips concentrates on 
the small end with most passengers having 10 to 25 training trips. On the contrary, the 
entropy distribution is centered in the middle level with a decreasing trend in the high 
and low levels. From the bottom right of Fig.  3, it is conspicuous that the prediction 
accuracy steadily increases with the decrease of the entropy, this is because more regu-
lar travelers are easier to predict. With this in mind, it is not hard to understand the 
relation between the number of training trips and prediction accuracy. The group with 
around 110 training trips has the highest prediction accuracy, this is because this group 
has the lowest entropy level (see bottom left of Fig.  3). It is not hard to conclude that 
the changes in the prediction accuracy are mainly caused by the entropy rather than 
the number of training trips. The most predictable people are those that have around 
110 training trips (around 110/0.7=157 trips with test set) in the 3 months, this number 
indicates that these people are very likely to be regular commuters. The SOT_O and the 
rank-based topic model follow the same trend under different numbers of training trips 
and entropy levels, but our topic model always has higher accuracy.

Eu = −

Nu∑

i=1

pu(i) log2 pu(i).

Table 1  The destination 
inference accuracy of scenario 1

a The number of topics J = 4 and K = L = 4

b The number of topics J = 5 and K = 10 , L = 100

Method Accuracy (test set) Accuracy (training set)

SO 67.38% –
ST 63.49% –
SOT_O 67.75% –
SOT_T 64.90% –
Kernel-based 67.15% –
Rank  topica 69.78% (0.14%) 73.24% (0.14%)
No-rank  topicb 31.15% (0.19%) 35.30% (0.18%)
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Scenario 2: using estimated training set

Scenario 2 imitates the real-world tap-in only system, where the ground truth destinations 
are unknown. We first use rule-based models to infer the destinations of all linked trips as a 
training set, and then train our topic model using the estimated training set. The rule-based 
model that we applied is similar to Trépanier et al. (2007):

• Rule 1: predict the destination as the origin of the next trip in the same day.
• Rule 2: predict the last destination of a day as the first origin of the same day.
• Rule 3: predict the last destination of a day as the first origin of the next day.

The next rule will be only applied when the previous rule is not applicable to a trip. Note 
that any two metro stations can be connected by transfers; therefore, we do not need to 
verify whether the origin of the next trip is in the vicinity of the first Metro line, which is 
different to the bus network in Trépanier et al. 2007.

The accuracy and the coverage of the three rules are shown in Table 2. The assump-
tions of these rules have been indirectly verified by cordon count data (Barry et al. 2002) 
and survey data (Barry et al. 2002; Munizaga et al. 2014), only a few study examines these 

7 25 50 75 100 125 150

Individual's number of training trips

1.5

2.0

2.5

3.0

3.5

4.0

E
nt

ro
py

0 400 800
Counts

0 100 200

1000

2000

C
ou

nt
s

0.0 0.5 1.0
Accuracy

Rank topic

SOT_O

0.4

0.6

0.8

A
cc

ur
ac

y

Rank topic

SOT_O

Fig. 3  Bottom left: the 2D histogram of the number of passengers, grided by the number of trips of each 
passenger in the training set and the entropy of their trips. Bottom right: the destination inference accuracy 
of two models for passengers at different entropy level and the histogram of entropy. Top: the destination 
inference accuracy of two models for passengers with different number of trips in the training set and the 
histogram of the number of trips in the training set. (Accuracies are shown by means.)
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workhorse assumptions by ground-truth destinations (Alsger et al. 2016). We can tell from 
Table 2 that Rule 1 using the consecutive trips could reach 86% accuracy. Although des-
tinations inferred by Rule 2 and Rule 3 are less reliable, they are indispensable parts for 
the training set, because they represent the other side of passengers’ travel patterns (e.g., 
returning home at night). The three rules together handle 85.26% trips.

We then infer the destinations of unlinked trips by our rank-based topic model. Note that 
for scenario 2, we only use the origins for the ranking. Because the real destinations are 
unknown and the frequency of destinations is roughly the same with the origins if a pas-
senger uses the smart card to and from. The destination inference results of the topic mod-
els and four benchmark models are shown in Table  2, the standard deviations are shown 
in parentheses. It can be found that the best benchmark model is the kernel-based method 
with 50.51% accuracy, our rank-based topic model performs slightly better than the kernel-
based method with around 51.43% accuracy in the test set. It is noteworthy that the accu-
racy of the training set is significantly higher than the test set, despite they are both trained 
by the noisy data. This is because the training set and the test set are not randomly parti-
tioned; there are some differences in the distributions of linked trips and unlinked trips. 
Besides the lack of ground truth, this difference further impacts the accuracy of scenario 2.

Interpreting latent topics

In the proposed topic model, each topic is characterized by a distribution over time (T), 
origin (O), or destination (D). By looking at these topic-word distributions, we can endow 
semantic meanings to latent topics. Therefore, we illustrate the topic-word distribution of 
scenario 1 by Fig.  4. For time topics in Fig.  4a, we can find topic T2 and T4 have very 
high probabilities of traveling in the morning, and could be interpreted as early and late 
morning peaks topics respectively. Contrarily, topic T1 indicates trips in the night and T3 
takes the rest of the day. For spatial topics shown in Fig.  4b, c, it can be found that O4 and 
D1 take near 1 probability for the ranked 1st station, representing boarding and alighting at 
the most visited station respectively. Meanwhile, O2 and D3 represent boarding and alight-
ing at the second most visited station; O1 and D2 represent boarding and alighting at the 

Table 2  The destination inference accuracy and coverage of scenario 2

a The number of topics J = 4 and K = L = 3

b The number of topics J = 5 and K = 10 , L = 100

Coverage Cumulative cover-
age

Method Accuracy (test set) Accuracy (training 
set)

Linked trips 44.44% 44.44% Rule 1 86.33% –
79.93% 35.49% Rule 2 76.80% –
85.26% 5.34% Rule 3 60.50% –

Unlinked trips 14.74% 100.00% SO 49.63% –
ST 43.02% –
SOT_O 48.93% –
SOT_T 44.19% –
Kernel-based 50.51% –
Rank  topica 51.43% (0.14%) 66.48%(0.16%)
No-rank  topicb 31.14% (0.20%) 35.48%(0.18%)



 Transportation

1 3

third most visited station. For O3 and D4, the probabilities peak at the ranked 4th station 
and then gradually tail off. Moreover, we found the topic-word distribution is quite stable 
across different runs. Although the order of topics could switch, the shapes of the topic-
word distributions maintain unchanged. This suggests the model is insensitive to initial 
values and the latent topics are good representations for travel patterns.

It is worth mentioning that although the probability of alighting at a station after rank 4 
is not zero, it is impossible to predict the destination of a trip as a station ranked after 4 by 
Eq. 3. Because Eq. 3 always predicts the destination as the most likely one, which is always 
the most likely destination (peak) in a particular latent destination topic. This limitation 
causes the accuracy of ranked 4th destination being compromised by stations after rank 4; 
Luckily, these trips are sparse and with high randomness, the first three destinations make 
up the majority.

After model training, each passenger is assigned with a distribution over topics, rep-
resenting to what extent the passenger belongs to each topic. This topic distribution is a 
high-level summary of a passenger’s travel pattern. For example, Fig. 5 shows the latent 
topic distribution of a passenger. Each matrix represents the probabilities over origin and 
destination topics under a time topic. Although we don’t know the exact mapping relation 
between the rank of a station and its real function (e.g., home/work), we can easily under-
stand these travel patterns by common sense. It is conspicuous that there are two latent top-
ics with significantly higher probability, indicating a possible commuting pattern. The most 
significant latent topic is [T2, O4, D3]; according to the semantic meaning shown in Fig. 4, 
[T2, O4, D3] represents this passenger frequently departure form the most visited station 
to the second most visited station in the early morning, indicating a possible home-work 
behavior. Similarly, the second significant topic [T1, O2, D1] represents traveling from the 
second most visited station to the most visited location in the night, which could be the 
work-home trip. Besides, [T1, O3, D1] also has a high probability, which could be back-
ing home from the third most visited location (such as a shop) at night. Other noticeable 
topics are mostly in T3 and have relatively low probabilities, these could be recreational 
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activities. Further, we can find this passenger often use metro in the early morning (T2), 
night (T1), and afternoon (T3), but seldom use it between 8:00 a.m. to 10:00 a.m. (T4).

Passenger clustering

Passenger clustering is important for personalized service, improving demand models, and 
various applications. The latent topic distribution is an excellent feature for passenger clus-
tering. There has been a large body of research that uses smart card data for passenger clus-
tering and travel pattern mining. Most existing methods capture either spatial or temporal 
features. Ma et al. (2013) clustered passengers based on spatial and temporal features; but 
the two kinds of features are independently defined and then combined together. Our latent 
topic distribution jointly captures the spatial and temporal patterns in a compact manner, 
which provides a useful approach for investigating people’s travel behaviors.

The feature used for clustering is passenger’ latent topic distribution. Jensen-Shannon 
divergence (JSD) is a metric of measuring the similarity between two probability distribu-
tions; we apply the square root of the JSD as the distance between two latent topic dis-
tributions. Next, we select 500 passengers and apply hierarchical clustering to illustrate 
common travel behaviors among the population. Hierarchical clustering is a useful way to 
visualize the structure of the clustering component. It is also useful in providing the cen-
troid and the number of clusters for faster clustering methods, such as K-means.

The hierarchical clustering of 500 passengers by their latent topic distribution is shown 
in Fig. 6. Noticeably, passengers on the left half of the figure (From 0 to around 275) show 
distinct two travel directions: one from the rank 1 station to the rank 2 station and the other 
from the rank 2 to the rank 1 station, indicating a commuting pattern. More specifically, the 
temporal topic within R1R2 and R2R1 are different in each cluster, showing these passen-
gers regularly leave from a place at a certain time and then come back at another time, the 
time at which passengers leave and back distinguishes different clusters. On the other hand, 
passengers on the right half of Fig. 6 (around 275 to 500) do not have an as significant 
commuting pattern as those on the left part, and therefore correspond to non-commuters. 

Fig. 5  The latent topic distribu-
tion of a passenger
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The latent topic distributions of non-commuters show more diverse interactions between 
different topics, especially between rank 1 stations and others. It is also interesting to find 
that the early morning topic (in the top minor tick between two major ticks, corresponding 
to T2 in Fig. 4) mostly belongs to the commuters; most non-commuters’ metro trips are in 
the late morning, afternoon, and night. The distinct pattern between commuters and non-
commuters validates the returners and explorers dichotomy in human mobility (Pappalardo 
et al. 2015). By utilizing the proportion of people under different clusters, a potential appli-
cation of our topic model is to generate synthetic itineraries of the population for transit 
simulation.

Conclusions and discussion

This paper uses a probabilistic topic model for smart card data destination estimation and 
travel pattern mining. We establish a three-dimensional LDA model than captures the time, 
origin, and destination attributes in smart card trips. Moreover, we introduce a station-
to-rank preprocessing that reduces the spatial divergence among passengers to discover 
more compact latent topics. The case study of Guangzhou Metro shows our model outper-
forms individual-history-based model by around 2% more accurate, in both scenarios with 
ground-truth or estimated training set. As a probabilistic model, the destination estimation 
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accuracy is more related to an individual’s travel regularity than the number of trips in the 
training set. Other than a prediction model, the proposed topic model is also a generative 
model that explains the probability of a trip by the individual’s latent topics (i.e. the prob-
ability of traveling from rank o station to rank d station under time topic t) and can be used 
for travel pattern analysis, and passenger clustering, and trip generation.

For the spatial topics, we introduce a station-to-rank transformation that enhances word 
co-occurrences among passengers and greatly improves the inference accuracy. The limita-
tion of rank representation is the loss of spatial information. As shown in Fig. 4b, c, each 
spatial topic actually corresponds to one rank, rather than a mixture of words. Therefore, 
the topic model cannot be used for spatial clustering as to the vocabulary clustering in 
natural language processing. Indeed, related research (e.g., Hasan and Ukkusuri (2014); 
Zhao et al. (2020)) primarily focused on passengers’ pattern rather than the spatial similar-
ity. How to derive spatial/region similarity from individuals’ transit itineraries is an inter-
esting direction, such as Du et al. (2019). Besides, representing stations by labels (home/
work/shop) could further improve the model interpretability; incorporating geographical 
and land use features could be promising future research. Finally, the effect of our model in 
the denser bus network is also worth exploring.

There is also improvement space for temporal topics. Firstly, distinguishing weekdays 
and weekends could be helpful to the prediction. Secondly, how to transform the topic 
model to a time-varying version is an interesting direction, such as Fan et  al. (2016). A 
problem with our smart card data is that it is a coarse sample for individuals’ life trajec-
tory. Even in our sampled 10,000 “frequent” users, around 50% of passengers use metro 
no more than four times a week; it is hard to utilize connections between neighboring trips 
under such big travel intervals. Finally, similar to Yin et al. (2017), we can include extrane-
ous variables to improve prediction accuracy. Out of the context of smart card data, it is 
promising to extend our model for a more general mobility prediction, such as next trip 
prediction (Zhao et al. 2018).
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