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Abstract
This paper explores the propagation effect of flight delays among airports in the aviation system and proposes a new mea-
sure, the propagation index, to effectively analyze the interrelationship among airports in relation to flight delays. This index
quantifies the effect of delay propagation by measuring the causality among delay time series. To assess the effectiveness of
the proposed index on airport delays, three neural network-based regression models are built. The comparative experiments
demonstrate that the propagation index proposed is highly correlated with observed airport delays.

Delay propagation causes increasing operational distur-
bance and worsens the performance of air transport sys-
tems (1). As a single aircraft is normally assigned to a
sequence of stages/flights among many cities, the arrival
delay of a former segment tends to affect the departure of
the aircraft for the next segment, causing further arrival
delays. Sometimes the turnaround time scheduled at an
airport is long enough to absorb the arrival delay; how-
ever, this could still result in passenger delays, as connect-
ing passengers may miss their connections because of the
arrival delay. Moreover, given that flights of the same
airline serving the airport share ground crew teams, the
arrival delay of one flight may affect other flights of this
airline. Further, flights share ground facilities such as
runways and gates, so the arrival delay of one flight will
also affect many flights of other airlines serving the air-
port. As a consequence, delays may accumulate from
early morning to late night, exacerbating the operational
problems for the airport over the day (2).

The research community has paid extensive attention
to delay propagation. The research on delay propagation
can be traced back to the 1990s, when Boswell and Evans
developed an analytical model to estimate the delays for
successive flights and found that the downstream delay
was approximately 1.8 times the initial delay (3). Beatty
et al. defined the delay multiplier (DM) and analyzed the
relationship between the potential downline delay and
initial delay (4). Inspired by these reports, several recent
studies have investigated the cascading effect of flight
delays. Liu et al. established a flight delay propagation
model based on Bayesian networks (BN), which showed
evident propagation from arrival delays to departure
delays (5). AhmadBeygi et al. introduced the quantitative

tool for assessing the ramifications of an individual flight
delay throughout the network (6). In addition, Laskey
et al. applied BN in a stochastic model and identified the
departure delay as the major factor driving the final arri-
val delay at the destination airport (7). Kondo created a
new DM to assess the repercussion of the initial delay on
all subsequent flights and adopted it to demonstrate how
the reduction of the initial delay helped lead to a higher
reduction in the propagated delays (8). Furthermore,
Belkoura et al. ameliorated the DM by integrating linear
and nonlinear indicators to differentiate various situa-
tions, revealing the relationship between the inbound and
outbound delays (9).

Despite these previous efforts, gaps still remain in the
understanding of the propagation effect in flight delays.
The studies mentioned above can effectively model how
an initial delay affects the subsequent entire-system
delays. However, there are fewer studies by far proposing
an index to clearly quantify the propagation effect among
different airports. A proper index is hard to compute
because detailed dynamics behind the diffusion of propa-
gation are still difficult to characterize, in particular
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because of the overlap of connected sources, that is, air-
craft, crew, passengers, buffers built into flight schedules,
and so forth (10–12). In this study, the delay propagation
index (PI) for a pair of airports is proposed from a new
perspective. Transfer entropy is used to perform causality
tests on the delay time series of two airports and then to
explore the dynamics of delay propagation, revealing the
combined effects of all the visible and latent factors that
lead to delay propagation. The properties of delay propa-
gation are further examined at the system level and an
estimation model similar to the one described in (13)
developed to demonstrate the effectiveness of the PI in
the air transport system.

The remainder of the paper is organized as follows.
The next section describes the methodology, including
the concept of transfer entropy-based causality tests and
the definition of the proposed PI. The third section pre-
sents an empirical analysis and estimation model based
on the data set of the air transport system of China. The
final section concludes this study and provides some fur-
ther discussions.

Methodology

In this section, a PI to quantify the delays propagated
within the air transport system is introduced. The overall
approach is based on the fundamental observation that
the delays in some airports have structural dependencies
caused by the delays propagated from other airports. To
capture this kind of dependency, the time series X is con-
structed to capture the arrival delays of flights from
Airport A to Airport B, and the time series Y to charac-
terize the departure delays of all flights departing from
B. The selected time-series analyzing tool should be able
to (a) measure the amount of directed transfer informa-
tion from time series X to time series Y and (b) generalize
the property of the air transportation system, that is,
non-linearity (9). With these two features taken into con-
sideration, the study chooses a causality test approach,
transfer entropy, to perform the individual test between
each pair of airports.

Delay Time Series

To capture the structural dependencies of different air-
ports, two types of delay time series are developed in this
step. Here, the focus is on daily time series because daily
interactions are the finest temporal resolution in the flight
data set. The 24-h period is divided into 96 15-min time
intervals (14). For Airports A and B, the departure delay
time series X is constructed (15–17). The component value
d_dep (t) of X represents the total departure delay of
flights taking off from Airport A during (t, t+ 1), t2{0,
1, 2 .. 95}. The arrival delay time series Y is also

constructed, and the component value d_arr (t) of each
interval represents the total arrival delays of flights from
Airport A to B during (t, t+ 1), t2{0, 1, 2 .. 95}.

Transfer Entropy

Definition and Application of Transfer Entropy. Transfer
entropy can measure the amount of directed (time-asym-
metric) transfer of information between two random
processes (18). In detail, a signal Y is said to partly cause
a signal X when the future of signal X is better predicted
by adding knowledge from the past of signal Y than by
using the past of signal X alone.

X and Y are the associated time series. Assuming that
Y = yt and X = xt, the departure process forms the focus
of the generalized Markov condition

p xt+ 1jydy

t , xdx

t

� �
= p xt + 1jxdx

t

� �
, ð1Þ
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where
dx is the order of Markov process X and dy is a hidden

Markov process that is causal to X,
yt and xt represent the arrival delay time series Y and

the departure delay time series X, respectively, as intro-
duced above.

Equation 1 will be fully satisfied if the past of the arri-
val delay time series of flights departing from Airport A
to Airport B cannot add any information to the predic-
tion of the departure delay time series of Airport B. In
other words, there is no causality from Y to X.

To measure the deviation from this condition (i.e., the
presence of causality), Schreiber used the expected
Kullback–Leibler divergence between the two probabil-
ity distributions at each side of Equation 1 and defined
the transfer entropy (TE) from Y to X as
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The deviation from the generalized Markov condition
caused by delay propagation implies the presence of caus-
ality from Y to X, which can also be measured by transfer
entropy.

Applying Transfer Entropy. For parameter selection, dy and
dx are the windows for yt and xt, respectively. The win-
dow dy indicates how far back in time the behavior of yt

can be observed. If a large value of dy is chosen, this
means that the history of yt will have an influence on the
reaction of xt (22). On the other hand, a small value of dy
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indicates that yt has such an immediate effect on xt that
the past of yt makes no contribution to xt.

In this work, exploring a proper value for dy means
finding the lag of the delay propagation from upstream
flights to downstream flights. The window dx indicates to
what extent xt is related to its own past behavior. A large
dx indicates that xt’s behaviors correlate with each other
over previous periods. Here, it is assumed that
dx=dy = 8, which means that the departure delay is
related to its earlier delays that occur from the previous
periods up to 200min ago.

Propagation Index

The causality relationship between Airports A and B rep-
resents the interactions caused by delay propagation. A
P-value of less than 5% indicates a divergence between
p xt + 1jydy

t , xdx
t

� �
and p xt + 1jxdx

t

� �
. In this case, a better

prediction can be made for the departure delay of
Airport A, given the arrival delay from Airport B to A.

Thus, delays in Airport A are affected by delayed flights
from Airport B. Statistically significant transfer entropy
is defined as the PI of a flight delay. As shown in Table 1,
given the delay time series constructed for the two air-
ports, A and B, pairwise tests are performed to examine
the causality relationship and quantify the PI.

Similar information is presented in Figure 1, in which
the influence within the airport pair is represented by a
directed edge from Airport B to A. The solid edge indi-
cates that there is causality from the airport at the start
node to the airport at the end node, and the dotted edge
indicates that no causality exists. The edge weight reflects
the amount of information flow from B to A, which is
the PI proposed in this paper.

Case Study on Air Transport System of
China

Data Description

The data set of the case study, comprising all flight infor-
mation in 2017 in China, was provided by the Civil
Aviation Administration of China (CAAC). The data-
base contains 2,638,140 domestic scheduled flights con-
necting 224 airports. The fields of this data set are
provided in Table 2. Additional information is also regis-
tered in the data set, such as the cause of each delayed
flight. Delay against schedule (DAS) is the most com-
mon delay concept in the transport literature and this

Table 1. Transfer Entropy Results

Pairwise
test

Transfer
entropy P-Value Hypothesis Edge

A to B 0.013 0.30 Accept Not exist
B to A 0.032 0.02 Reject Exist

Figure 1. A simple PI.
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metric is employed to calculate the arrival and departure
delays used in this study (23).

Delay Propagation Analysis

Given the definition of PI, the system-level performance
of the propagation effect among airports can be readily
explored. Pairwise causality tests to all the airport pairs
are performed for each day and a daily weighted delay
causality network built for January 2017. Figure 2 shows
the network of a typical day (January 3) when there was
precipitation in southern China, with nodes representing
the airports and edges the directed influence among air-
ports. A higher value of PI (the thicker edge in the fig-
ure) means a close dependency between the airport pair
because of delay propagation. Among all the 224 air-
ports, 102 airports are connected with other airports
according to the delay propagation analysis.

Table 3 summarizes the network properties. It can be
seen that on average each airport is affected by 1.43

upstream airports and affects 1.43 downstream airports.
As one of the biggest airports, SZX (Shenzhen Bao’an
International Airport) affects seven airports, whereas
HGH (Hangzhou Xiaoshan International Airport) has
the most influence on downstream airports. WUH
(Wuhan Tianhe International Airport) is affected by
seven airports and HFE (Hefei Xinqiao International
Airport) is the airport most affected by upstream air-
ports. Both WUH and HFE are located in the center of
the airline/air route network (24) and they can be easily
affected by other airports because of their higher
connectivity.

The maximum weight edge is from the regional hub
airport KMG (Kunming Changshui International
Airport) to the branch line airport TCZ (Tengchong
Hump Airport). The propagation path from KMG to
TCZ appears 116 times during the year of 2017. Three
typical days are further investigated (Table 4) to under-
stand the delay propagation between these two airports.
On January 3, seven flights from KMG arrived at TCZ
with an average delay of 34.1min, whereas five flights
from other airports arrived at TCZ with an average
delay of only 2.6min. Thus, the edge weight of KMG to
TCZ is rather large. On January 7, eight flights from
KMG arrived at TCZ with an average delay of 23.8min
whereas five flights from other airports arrived at TCZ
with an average delay of 16.0min, so the edge weight is
much smaller. Lastly, on January 10, flights from KMG
to TCZ encountered shorter average delay than those
from other airports. Therefore, the edge weight is zero,
which means that the delayed flights from KMG to TCZ
have no impact on the departure delay at TCZ. Because
most arrival flights of TCZ are from KMG, the propaga-
tion path appears at a high frequency (up to 116 times).

Model Estimation

Estimation models are developed based on neural net-
work models, stacking together multiple neurons in
layers to produce a final output. The main objective of
this analysis is exploring what role PI plays in airport
delays. The full model for an individual airport decom-
poses daily average departure delays into two parts: one
is related to the propagation effect and the other is
related to the delay generation factors. Components of
the first part represent the influence of upstream air-
ports. It would be better to use the PIs from different air-
ports as separate features. However, because of the high
dimensions of features, total PIs are summarized from
large airports, medium airports, and small airports as
three features to represent the propagation effect of
upstream airports. It should be noted that this is a sim-
plified method and it would be possible to improve the
model in the future by incorporating more of the data.

Table 2. Available Information for Each Flight

Information for each flight

Flight number Scheduled arrival airport
Flight date Scheduled arrival time
Mission type Real departure airport
Aircraft type Real departure time
Scheduled departure airport Real arrival airport
Scheduled departure time Real arrival time

Figure 2. Weighted delay causality network for January 3, 2017.
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In the second part, airport delays result from many other
factors, which has been mentioned and discussed exten-
sively in the previous literature (25–28) (see ID #1 to #7
in Table 5). Therefore, the full model contains all the fea-
tures listed in Table 5 along with the PI (ID #1 in
Table 5).

The data set of China air transport systems in 2017 is
used to extract the features and train and test the models.
To demonstrate the effect of considering PI, for each

airport, three models are built. The full model uses all
the features (0;7 in Table 5) and Comparison Model 1
uses only the generation factors (1;7 in Table 5).
Comparison Model 2 uses the generation factors and the
modified propagation feature, that is, the average PI
value from the large, medium, and small airports in
2017.

Moreover, 365 samples are used to train and test each
airport model with the recommended 80–20 splits. To

Table 3. The Network Properties

Attribute Name Value Description

Number of nodes na 102 Number of airports involved in delay propagation
Number of edges na 146 Delay propagation paths
Maximum out-degree node SZX 7 The airport affecting most downstream airports
Maximum in-degree node WUH 7 The airport affected by most upstream airports
Average out/in-edges na 1.43 Average airport number that each airport is affected by/affects
Maximum out-strength node HGH 0.272 Airport with the most total out-going influence
Maximum in-strength node HFE 0.246 The most affected airport
Average out/in-strength na 0.046 Average in/out-strength of all airports
Maximum weight edge KMG!

TCZ
0.079 Edge of an airport pair with the strongest dependency

Average weight na 0.032 Average weight of all edges

Note: na = not applicable; SZX = Shenzhen Bao’an International Airport; WUH = Wuhan Tianhe International Airport; HGH = Hangzhou Xiaoshan

International Airport; HFE = Hefei Xinqiao International Airport; KMG = Kunming Changshui International Airport; TCZ = Tengchong Hump Airport.

Table 4. Specific Cases

ID Date
Flights

KMG!TCZ
Average

arrival delay
Flights

other airports!TCZ
Average

arrival delay Edge weight

1 January 3 7 34.1 min 5 2.6 min 0.079
2 January 7 8 23.8 min 5 16.0 min 0.031
3 January 10 8 11.9 min 5 16.8 min 0.000

Note: KMG = Kunming Changshui International Airport; TCZ = Tengchong Hump Airport.

Table 5. Variables in the Delay Estimation Model

ID Feature Delay cause

0 Propagation index Total PI value of other large/medium/small airports
1 Weather conditions Adverse weather conditions, accumulation of ice and snow, en-route convective weather, airport

capacity decrease caused by weather, and so forth
2 Air carrier Aircraft cleaning, fueling, catering, baggage loading, and so forth
3 Air traffic control Human factors, ATC restriction en-route or capacity, weather, service not provided in time, and

so forth
4 Passengers Handling oversales, missing checked-in passenger, baggage processing, passenger behavior and

health concerns, and so forth
5 Security Special event emergency, terrorist attack, and so forth
6 Airport operations Runway/taxiway closure, slow information publication, airport facilities (e.g., air bridge, gate,

parking space, communication and navigation equipment), and so forth
7 Time dummies Seasonal effects
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better make use of these data, k-fold cross validation is
performed to test the effect of the algorithm. The steps
of k-fold cross validation are as follows:

� Step 1: Divide the data set into five batches
randomly.

� Step 2: Assign the test set to one batch and the
train sets to the other four batches.

� Step 3: Repeat step 2; assign the test set to each
batch once.

Figure 3 shows the neural network used in the model.
The first layer is the input layer and the last is the output
layer. All the layers in the middle are called hidden layers,
with 100 neurons in this study. Each neuron has an acti-
vation functiong �ð Þ. The parameters of the network are
the weight uj and bias u0 of each layer. The goal of the
network is to learn the network parameters so that the
predicted outcome is as close as possible to the ground
truth. Back-propagation along the loss function is used
to learn the network parameters. The Relu activation
function is used for neurons in both hidden and output
layers, and a mean squared error loss function. To pre-
vent overfitting, regularization numbers are adopted.
The Relu activation function is

g uT x
� �

=max 0, uT x
� �

ð3Þ

where uT x= u0 +
Xn

j= 1

ujxj ð4Þ

The mean squared error loss function is

MSE=
1

m

Xm

i= 1

yi � ŷið Þ2_ ð5Þ

where ŷi is the predicted label and yi is the true label.

Estimation Results

As discussed above, the three models are trained and
tested for each airport to understand the impact of the
PI. The results show that the performances of these mod-
els are desirable, yet there is a difference between the
three models for most airports. The modeling outcomes
of a subset of airports are listed in Table 6. An R-square
score (from 0 to 1) is usually used as a metric for measur-
ing the goodness of fit. The closer the value of R-square
to 1, the better the fit of the regression line to observa-
tions. The average R-square score of all airports by the
full model reaches 0.590, which is 7.0% higher than that
of Comparison Model 1 and 10.0% higher than that of
Comparison Model 2. It can clearly be seen that the pre-
diction of the full model is better than that of the other
models. The results indicate a positive influence of the PI.

Conclusion

This paper proposes a systematic framework to examine
the interrelationship among different airports with
respect to air traffic delays. The results contribute to the
literature by capturing the mechanism of delay propaga-
tion with the method that has not been used in the exist-
ing literature, and by demonstrating significant impact of
PI on airport delays. The PI is defined and it is applied to
quantify the directed influence among airports. The basis
of the method is detecting the interdependency of delay
time series of different airports with transfer entropy.
Although transfer entropy estimation suffers from noisy
observations in real-world data, the method still yields
new insights into the analysis of the interaction patterns
in dynamical air transport systems. The analysis can

Figure 3. Estimation network based on neural network.
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effectively reveal the degree of delay propagation, and
the results can be used to further study the network effect
(29–31).

To investigate the impact of the propagation index on
flight delays, the PIs are incorporated into a neural net-
work regression model to estimate the average departure
delay. As input features, the PI and other delay genera-
tion factors are used to train the full model. For the sake
of comparison, only delay generation factors are used to
train Comparison Model 1. Then, the generation factors
and the modified PI are used to train Comparison Model
2. The test results show that the full model is substan-
tially superior. Future research may consider and incor-
porate some missing elements of this study, for example,
passenger loads.
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