
Transportation Research Part B 114 (2018) 199–212 

Contents lists available at ScienceDirect 

Transportation Research Part B 

journal homepage: www.elsevier.com/locate/trb 

A hierarchical mixture modeling framework for population 

synthesis 

Lijun Sun 

a , ∗, Alexander Erath 

b , Ming Cai c , ∗

a Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec H3A 0C3, Canada 
b Future Cities Laboratory, Singapore-ETH Centre, Singapore 138602, Singapore 
c School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China 

a r t i c l e i n f o 

Article history: 

Received 22 September 2017 

Revised 3 June 2018 

Accepted 4 June 2018 

Available online 14 June 2018 

Keywords: 

Population synthesis 

Multilevel latent class 

Mixture model 

Probabilistic tensor factorization 

a b s t r a c t 

Synthetic population is a key input to agent-based urban/transportation microsimulation 

models. The objective of population synthesis is to reproduce the underlying statistical 

properties of real population based on available microsamples and marginal distributions. 

However, characterizing the joint associations among a large set of attributes is challeng- 

ing because of the curse of dimensionality, in particular when attributes are organized in 

a hierarchical household-individual structure. In this paper, we use a hierarchical mixture 

model to characterize the joint distribution of both household and individual attributes. 

Based on this model, we propose a framework of generating representative household 

structures in population synthesis. The framework integrates three models: (1) probabilis- 

tic tensor factorization, (2) multilevel latent class model, and (3) rejection sampling. With 

this framework, one can generalize not only the associations of within- and cross-level 

attributes, but also reproduce structural relationships among household members (e.g., 

husband-wife). As a case study, we implement this framework based on the household 

interview travel survey (HITS) data of Singapore, and then use the inferred model to gen- 

erate a synthetic population pool. This model demonstrates great potential in reproducing 

the underlying statistical distribution of real population. The generated synthetic popula- 

tion can serve as a replacement for census in developing agent-based models, with privacy 

and confidentiality being protected and preserved. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Agent-based microsimulation models have become increasingly important in urban/transportation planning practices

(e.g., MATSim Balmer et al., 2006 ). Compared with traditional aggregated planning models, agent-based models simulate

the decisions and activities of each individual person over time, providing more detailed and accurate information for plan-

ning and policy evaluation. A first and critical step in developing such models is to prepare a list of population (agents) with

comprehensive demographic and socioeconomic attributes that may affect agents’ decision-making and activity patterns. An

ideal data source for this purpose is the census data of a city, since it registers full information of the whole population.

However, due to privacy concerns, the full census data is strictly confidential and even the use of samples and marginals is

highly sensitive. To reduce the risk of disclosure, a typical practice of statistical bureaus is to release two sets of reproduced
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data separately: (D1) a small fraction (e.g., 1–5%) of disaggregated microsamples, and (D2) marginal distributions for differ-

ent attributes. Data set (D1) is often referred to as the public use micro samples (PUMS). Data set (D2) is usually provided

as one-way, two-way, and sometimes multi-way cross-tabulations aggregated from the full census. 

Because of the confidentiality and privacy issues in using census, developing methodologies to generate a synthetic pop-

ulation has received considerable attention in the literature. A common objective of these models is to take full use of the

available microsamples and marginals to create a representative list of agents, which can reproduce the underlying struc-

ture and statistical properties of the real population as much as possible. In practice, it is not easy to achieve this goal and

there are three challenging problems to be addressed in designing population synthesis models. The first challenge is to

preserve the high-dimensional dependency structure and match the aggregated data without introducing potential biases.

For example, at the individual level, age and income are clearly associated, while intuitively we may consider age and sex

to be independent across the population. At the household level, a good example is the dependency between dwelling type

and number of household members —a household with more members needs a large house. These association structures be-

come more and more complex when the number of attributes gets larger, and an ideal population synthesis model should

be able to fully capture these structures. Most existing works on population synthesis have focused on solving this prob-

lem. The second challenge is to associate both household-level attributes and individual-level attributes in a unified manner

( Anderson et al., 2014 ). For example, car availability (as a household attribute) should be strongly related to whether house-

hold members have driving licenses (as an individual attribute). The third challenge is to reproduce the interdependencies

among agents in the same household (e.g., the relationship of husband and wife ), even this type of structural relationship is

not reported in the census data. While the latter two issues are as critical as the first one, in the past little attention is paid

to reproduce the cross-level and within-household associations. 

There is a vast literature on population synthesis modeling. In general, previous work can be split into three categories:

(1) synthetic reconstruction (SR) (e.g. Deming and Stephan, 1940; Beckman et al., 1996 ), (2) combinatorial optimization (CO)

(e.g. Williamson et al., 1998; Voas and Williamson, 2001 ), and (3) statistical learning (SL) (e.g. Farooq et al., 2013; Sun

and Erath, 2015; Saadi et al., 2016; Hu et al., 2017 ). In terms of development, SR and CO-based models have been stud-

ied for decades and applied in various projects. However, these models often have some problems in implementation and

a critical one is that SR and CO only replicate existing agents in the PUMS. Thanks to the advances in statistical learning

theory and application, probabilistic and SL-based models have become emerging in the development of population syn-

thesis models recently. In comparison with SR and CO, SL-based approaches try to encode the structure of population as a

probabilistic model, and thus it is able to generate “real” synthetic data by sampling from the distribution instead of cloning

( Farooq et al., 2013 ). Among those SL-based approaches, notably, Hu et al. (2017) proposed to model household-individual

association using a nested latent class structure. This seems to be the first SL-based work addressing the association issues

among household-individual attributes. The Dirichilet process is used to capture the number of latent classes in a non-

parametric Bayesian setting. This model shows great potential in capturing the interdependencies among individuals within

the same household by using a household class-specific conditional distribution. Although this model is both flexible and

effective, the underlying assum ptions still create some problems in real-world implementations. First of all, given the condi-

tional independence assumption for individuals in the same household, it cannot fully characterize structural relationships

in households. Second, since individual classes are defined separately for each group-level class, the model needs a large

number of parameters and the computational cost in Bayesian inference could be high when the size of input data and the

number of attributes of interest become large. 

In this paper, we use a hierarchical probabilistic model to capture and reproduce the structure of population at both

household and individual levels. To better characterize the underlying joint distribution for both households/individuals

and the within-/cross-level association structures, the proposed framework integrates three models: (1) probabilistic ten- 

sor factorization ( Sun and Axhausen, 2016 ), which is applied to model the joint distribution for nominal categorical vari-

ables at each level using a mixture structure, (2) multilevel latent class model ( Vermunt, 20 03; 20 08 ), which captures the

interaction between household-level and individual-level latent classes, and (3) rejection sampling, which further filters 

the synthetic population to preserve the structural relationships among individuals in the same household (e.g., husband -

wife - child ). The first two models provides an integrated probabilistic model for full household observations. Based on the

estimated model, we can generate a large pool of synthetic population from the inferred model. The first two models

ensures this hierarchial mixture framework to capture the association among household- and individual-level attributes; 

however, it still cannot reproduce meaningful individual associations within a household due to the assumption that in-

dividuals are independent given household class label. To correct this, rejection sampling (the third model) is used as a

postprocessing step, in which we transform the structural relationships into a target distribution to filter those created

households/individuals. The remaining samples after rejection sampling are used as the final synthetic population. This in-

tegrated framework allows us to learn the underlying structure distribution of population from limited PUMS data. In ap-

plying this model, one only need the PUMS data as input and define two hyperparameters ( G and M for numbers of latent

classes at the household level and the individual level, respectively). The MATLAB codes for this project are available at

https://github.com/lijunsun/population _ synthesis _ hierarchical . 

The remainder of this paper is organized as follows. In Section 2 , we review previous literature on population synthe-

sis modeling. Section 3 first provides an overview of the hierarchical population synthesis problem, and then presents a

model that integrates probabilistic tensor factorization and multilevel latent class model. In addition, an efficient expecta-

tion maximization (EM) algorithm is derived for model inference. Using the household interview travel survey (HITS) data in

https://github.com/lijunsun/population_synthesis_hierarchical
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Singapore, we illustrate the application of the proposed framework in Section 4 . We also show the use of rejection sampling

as a postprocessing step to capture complex interdependencies among household members. Finally, Section 5 concludes the

study and suggests future research directions. 

2. Literature review 

In principle, the generation of a synthetic population involves two steps. The first step is to develop a model to learn

the joint distribution of all attributes of interest from the PUMS and available marginals. This step is often referred to as

“fitting”. The second step—“generation”—is to create a new set of synthetic data by drawing from the fitted distribution. 

A critical research question in population synthesis is to make the fitted distribution as realistic and representative as

possible. Previous efforts in addressing the fitting problem have been focused on SR and CO approaches. These two ap-

proaches have been developed for decades and widely applied in urban/transportation planning projects. However, as men-

tioned, a major limitation of these two approaches is that they only replicate existing agents in the PUMS rather than obtain

a random draw from the underlying distribution. Taking the iterative proportional fitting (IPF) algorithm—the backbone of

SR—as an example, if a particular agent (combination of attributes) is not observed in the PUMS, it will not be created in

the synthetic data because the initial cell corresponding to the combination is zero. A common practice to deal with this

zero-cell problem is to add a small value to initialize those zero cells. However, by doing so one will introduce an arbitrary

bias in the underlying correlation structure ( Guo and Bhat, 2007 ). This problem becomes even more difficult in the situation

where we only have a small set of PUMS but many attributes to consider, because most cells in the high-dimensional con-

tingency table will be zero. Besides the SR and CO approaches, Barthelemy and Toint (2013) developed a sample-free method

that requires only marginals as input. As a particular type of SR, this method is able to produce synthetic population when

disaggregated samples are not available. We refer readers to Müller and Axhausen (2011) , Farooq et al. (2013) , and Sun and

Erath (2015) for a brief review about SR/CO-based models. Below we mainly review the SL track and its extensions on joint

synthesis for both household and individual attributes. 

Recent advances in statistical learning has provided us with alternative data-driven tools and methods to solve the pop-

ulation synthesis problem, in particular on characterizing the complex interactions and the generation of multivariate pop-

ulation data (see e.g., Caiola and Reiter, 2010; Farooq et al., 2013; Sun and Erath, 2015; Saadi et al., 2016; Hu et al., 2017 ).

We refer to this track as statistical learning (SL)-based models. Compared with SR and CO, SL considers each microsample

an observation from the underlying joint distribution of all attributes and the goal is to find the best model configuration

to characterize this distribution explicitly. In other words, SL focuses on the joint distribution directly instead of replicating

existing samples. By doing so, a probability can be estimated for each combination, including those combinations which

are not observed in the PUMS. In building such models, one often first proposes a parametric model and then learn its

structure and parameters by maximizing likelihood using the observed microsamples and marginals. These models in gen-

eral offer good performance in dealing with the lack of heterogeneity problem in SR and CO. Below we summarize some

signature contributions on this track. In order to reduce to risk of disclosure, Reiter (2005) employed classification and

regression tree (CART) as an imputation method to replace sensitive attributes with multiple imputations. Caiola and Re-

iter (2010) further developed this model by replacing CART with random forest (RF). Given the high dimensionality of the

population synthesis problem, it is typically very difficult to model the joint distribution directly. Farooq et al. (2013) used

Markov chain Monte Carlo (MCMC) to draw samples by performing Gibbs sampling to update attributes in sequence based

on conditional distributions. If the total number of attributes is n , preparing the full conditional distributions is equivalent

to modeling n subproblems with each having n − 1 attributes. Although the problem becomes easier than the original one

by reducing one dimension, it is still very challenging when n is large. The authors proposed several methods to build

those conditionals, such as summarizing the microsamples into marginal conditionals, estimating parametric models (e.g.,

discrete choice), and use partial conditionals instead of full conditionals with the risk of introducing potential bias. Similarly,

Saadi et al. (2016) used hidden Markov model (HMM) to capture the correlation and complex dependencies among a set

of attributes by positioning them in a certain sequence. In this model, the closer two attributes are, the more the corre-

lation/association can be captured between them. Overall, these models focus on the synthesis of individuals (or assigning

household attributes to individuals), while little attention is paid to the hierarchical household structure due to the difficulty

in encoding both household and individual attributes jointly. Sun and Erath (2015) is special case extending the generation

of individuals to full household. However, as a first step it requires one to define individual types (i.e., household owner,

spouse of household owner, and others) and household structures manually (i.e., owner only, owner-others, owner-spouse-

others), and thus many models need to be estimated for each type/structure. In additional, since individuals are generated

in a owner-spouse-other hierarchy, the associations of individual attributes for spouses and others may not be preserved as

much as those for owners even using a complex network structure. 

In the SR and CO frameworks, the modeling of within- and cross-level associations among household- and individual-

level attributes is usually done by first sampling a household and then gathering individuals to fill it ( Ye et al., 2009;

Pritchard and Miller, 2012; Barthelemy and Toint, 2013; Zhu and Ferreira, 2014 ). In SL-based approaches, this type of as-

sociations are modeled in different ways. Sun and Erath (2015) proposed to use Bayesian network to model the interde-

pendencies among both household and individual attributes. This Bayesian network model can efficiently encode the joint

distribution using a probabilistic graphical structure, and the sampling of full household can be performed in a hierarchial

manner. This model is particularly useful in the case where the sample size is limited in the PUMS while the number of
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Table 1 

Sample of household survey data. 

HID Dwell Eth Car Npax IID Age Sex Income License Pass 

1 Condo Indian Yes 3 1 45–49 yrs old M $50 0 0–5999 Yes PR 

2 35–39 yrs old F $20 0 0–2499 No PR 

3 10–14 yrs old M No income No PR 

2 HDB 3 Malaysia No 2 1 55–59 yrs old F $30 0 0–3999 No Citizen 

2 10–14 yrs old F No income No Citizen 

3 Landed Chinese Yes 4 1 45–49 yrs old M $60 0 0–7999 Yes Citizen 

2 40–44 yrs old F No income No PR 

3 20–24 yrs old M $30 0 0–3999 Yes Citizen 

4 10–14 yrs old F No income No Citizen 

i x 1 
i 

x 2 
i 

x 3 
i 

x 4 
i 

( n i ) 1 x 5 
i 1 

x 6 
i 1 

x 7 
i 1 

x 8 
i 1 

x 9 
i 1 

2 x 5 
i 2 

x 6 
i 2 

x 7 
i 2 

x 8 
i 2 

x 9 
i 2 

��� ��� ��� ��� ��� ���

HID and IID represent household ID and individual ID, respectively. Npax denotes the total number of individuals within 

a household. The household-level attributes are Dwell — dwelling type, Eth — ethnicity, Car — car availability, and Npax 

— the total number of people in the household. The individual-level attributes are Age, Sex, Income, License — whether 

the individual has a driving license, and Pass — pass type of status (citizen/permanent resident). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

attributes is large. Casati et al. (2015) further developed the MCMC model of Farooq et al. (2013) to account for the hier-

archical structure of households and individuals. Hu et al. (2017) developed a non-parametric Bayesian mixture model to

characterize the joint distribution of household and individual attributes in a nested framework. This model shows great

performance in characterizing the underlying distribution of the hierarchical household/individual variables. To some extent, 

the multilevel latent class structure can even capture the association between different individuals in the same household.

However, as mentioned, strong interdependencies such as husband and wife may not be well captured by drawing individu-

als independently. On the other hand, by allowing individual-level classes to vary across household-level classes, the model

can be difficult to estimate, also prone to the risk of overfitting. Based on this work, in the next section we introduce a

product multinomial hierarchical mixture structure for population synthesis. To use information more efficiently, the pro-

posed model borrows information at the individual-level by restricting individual-level classes to be universal and shared

across all household-level classes. 

3. Modeling framework 

In this section we present the population synthesis framework with a product multinomial hierarchical mixture model.

The framework models a household using a hierarchical (two-level) data structure. The first level consists of all household-

level attributes which are shared among all household members. Examples of such attributes include dwelling type, car

availability , and the total number of household members . At the second level, we focus on each individual person and his/her

demographic/socioeconomic attributes (e.g., age, sex , and income ). In this case, we assume that all attributes are coded as

categorical variables. We begin with describing this hierarchical structure using the example of the household interview

travel survey (HITS) in Singapore. 

3.1. Problem description 

One essential input to this problem is the PUMS. However, when the PUMS is not available, as a replacement one can use

large scale surveys registering both household and individual information (e.g., HITS). Table 1 shows an example structure

of Singapore’s HITS. 

Following the example in Table 1 , we model both household- and individual-level attributes as nominal categorical vari-

ables. The following notations are used in this paper. We use i = 1 , . . . , N to index households in the PUMS. Let x i denote the

full information of household i . In an observation, we use k = 1 , . . . , h to index household-level attributes: dwelling type, eth-

nicity, car availability , and the total number of people . For each attribute k = 1 , . . . , h, we define x k 
i 

∈ { 1 , . . . , d k } as a discrete

value starting from one, where d k is the total number of categories for attribute k . For example, d k = 2 (Yes, No) for the

attribute car availability . We denote by n i the total number of people in household i . In the proposed model, n i is also con-

sidered a household-level attribute ( x 4 
i 
). At the individual level, we use k = h + 1 , . . . , K to index attributes age, sex, income,

driving license , and pass type . We use x i j = (x h +1 
i j 

, . . . , x K 
i j 
) � to denote the full observation of individual j in household i . Same

as household-level attributes, individual-level attributes are also considered categorical variables and each x k 
i j 

is modeled as

a discrete values starting from one ( x k 
i j 

∈ { 1 , . . . , d k } , k = h + 1 , . . . , K). In the example of Table 1 , we have 9 attributes in

total ( K = 9 ), of which 4 are at the household level ( h = 4 ) and 5 are at the individual level. 
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3.2. Product multinomial hierarchical mixture model 

In a probabilistic setting, our goal is to find the best configuration of p ( x i ) that can encode the joint distribution of

household-level attributes and individuals within the household efficiently and effectively. However, since x i is coded in a

hierarchical structure, it is difficult for us to write down a closed-form solution directly. 

A simple solution is to remove the hierarchical structure by assigning household-level attributes to each individual (i.e.,

x i = 

(
x 1 

i 
, . . . , x K 

i 

)� 
). By doing so we essentially ignore the hierarchial feature and a potential approach to model the joint dis-

tribution of high-dimensional categorical variables is the probabilistic tensor factorization method ( Dunson and Xing, 2012;

Sun and Axhausen, 2016 ). We assume that all attributes are at the individual level and encode the joint distribution using a

probabilistic CANDECOMP/PARAFAC (CP) factorization (i.e., product multinomial mixture) model with M latent classes. 

p 
(
x i | π, θ

)
= 

M ∑ 

m =1 

πm 

[ 

K ∏ 

k =1 

θ ( k ) 

x k 
i 
m 

] 

, (1)

where πm 

denotes the probability that an observation belongs to class m . θ ( k ) 
c k m 

= p m 

(
x k 

i 
= c k 

)
is the probability of observing

x k 
i 

= c k if an observation x i belongs to class m . 

The underlying assumption is that the joint distribution of all categorical variables can be expressed as a mixture of latent

components, with each being a product multinomial. By doing so, the probabilistic tensor factorization model transforms the

original data using low-dimensional latent factors, allowing us to model the data with an efficient representation. However,

by flattening the hierarchical structure, one essentially ignores the interdependencies among household members. On the

other hand, household attributes and individual attributes in general have their own latent structures, therefore removing

the hierarchical structure further increases the dimensionality of the data and the model may require far more mixture

components to fully capture the joint associations. 

To better account for the hierarchical structure in our model, we propose to integrate the multilevel latent class model

on the product multinomial mixture model. Multilevel latent class model is first introduced by Vermunt (20 03, 20 08) . It is

an extension of the classical latent class model (or finite mixture model) for hierarchical data sets. The model assumes that

there are latent classes at both group (household in our case) and individual levels, and the interaction between the two

levels can be captured using a conditional distribution on the latent class labels. Below we describe the integrated product

multinomial hierarchical mixture model without universal classes at the individual level. Before presenting the formulation,

we introduce the following assumptions and notations in the setting of population synthesis: 

• there exist G latent classes at the household level. We use g = 1 , . . . , G to index these classes. 
• for each household-level latent class g = 1 , . . . , G, there exist M latent classes at the individual level ( m = 1 , . . . , M). Note

that individual-level latent classes are defined separately for each household-level latent class g . 
• each household i belongs to a certain group-level latent class g (the membership is labeled as z i ). We denote λg =

p ( z i = g ) as the probability that a household i belongs to household-level class g . 
• given z i = g, household-level attributes are conditionally independent and the joint distribution can be expressed as

a product multinomial. In other words, we have p(x 1 
i 
, . . . , x h 

i 
| z i = g) = 

∏ h 
k =1 φ

(k ) 

x k 
i 

g 
. For any household-level attribute k =

1 , . . . , h, we denote φ(k ) 
c k g 

= p(x k 
i 

= c k | z i = g) ( ∀ c k = 1 , . . . , d k , ∀ g = 1 , . . . , G ). 
• within a household i with label z i = g, each individual j ( j = 1 , . . . , n i ) belongs to a certain individual-level latent class

m (the membership is labeled as z ij ). We denote μgm 

= p(z i j = m | z i = g) as the conditional probability that an individual

j —in household i —belongs to class m given the household membership z i = g. 
• individual-level attributes are conditionally independent given z i = g and z i j = m, and the joint distribution of x i j =

(x h +1 
i j 

, . . . , x K 
i j 
) is also a product multinomial. In other words, we have p(x h +1 

i j 
, . . . , x K 

i j 
| z i = g, z i j = m ) = 

∏ K 
k = h +1 θ

(k ) 

x k 
i j 

gm 

. For

any individual-level attribute k = h + 1 , . . . , K, we denote θ (k ) 
c k gm 

= p(x k 
i j 

= c k | z i = g, z i j = m ) ( ∀ c k = 1 , . . . , d k , ∀ g = 1 , . . . , G,

∀ m = 1 , . . . , M). 

For simplicity, let λ = { λg : g = 1 , . . . , G } , let μ = { μgm 

: g = 1 , . . . , G, m = 1 , . . . , M} , let φ = { φk 
c k g 

: k = 1 , . . . , h, c k =
1 , . . . , d k , g = 1 , . . . , G } , and let θ = { θ (k ) 

c k gm 

: k = h + 1 , . . . , K, c k = 1 , . . . , d k , g = 1 , . . . , G, m = 1 , . . . , M} . Based on the as-

sumptions above, we can derive the probability of observing a full household p ( x i ). Firstly, by integrating out z ij in

p(x i j | z i = g, z i j = m ) , the probability of observing individual j in a household i conditional on z i = g can be written as a

mixture of product multinomials 

p 
(
x i j | z i = g 

)
= 

M ∑ 

m =1 

μgm 

[ 

K ∏ 

k = h +1 

θ ( k ) 

x k 
i j 

gm 

] 

. (2)
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Taking household information into account, the probability of observing full information x i is given by 

p 
(
x i ;λ, μ, φ, θ

)
= 

G ∑ 

g=1 

λg 

[ 

h ∏ 

k =1 

φ( k ) 

x k 
i 
g 

n i ∏ 

j=1 

p 
(
x i j | z i = g 

)] 

= 

G ∑ 

g=1 

λg 

[ 

h ∏ 

k =1 

φ( k ) 

x k 
i 
g 

n i ∏ 

j=1 

[ 

M ∑ 

m =1 

μgm 

[ 

K ∏ 

k = h +1 

θ ( k ) 

x k 
i j 

gm 

] ] ] 

, 

(3) 

where λ, μ, φ and θ are parameters to be estimated. As individual-level class label z ij is conditional on household-level

class z i , the model is able to reproduce the interdependencies among individuals within the same household. 

The proposed hierarchical structure simplifies the modeling of original data using low-dimensional latent factors at each

level, thus providing us a compact representation of the hierarchical data structure. As a result, it substantially reduces the

number of parameters in modeling x i , and hence the model can efficiently estimate the probability of observing a household

in Eq. (3) . With this formulation, the likelihood of observing all input data (e.g., PUMS, or the survey in Table 1 ) can be

written as: 

L 

(
λ, μ, φ, θ| x 

)
= 

N ∏ 

i =1 

p 
(
x i ;λ, μ, φ, θ

)
, (4) 

where N is the total number of households in the survey data. 

3.3. Model inference 

A common approach to estimate parameters in latent class models is to apply the expectation maximization (EM) algo-

rithm. The EM algorithm is an efficient tool for mixture distribution problems and missing data problems ( Dempster et al.,

1977 ). In mixture models, the EM algorithm treats class labels as unobserved latent variables and performs an iterative

updating method to estimate parameters. The algorithm involves two steps in each iteration. The expectation (E) step for-

mulates the expectation of the complete log-likelihood function, and computes the expected value of latent variables given

current estimates of the parameters. Under current expected values of those latent variables, the maximization (M) step esti-

mates parameters by maximizing the expected complete log-likelihood function. In implementation, the EM algorithm starts

with random initializations for all parameters and then perform the E-M procedure iteratively until it reaches convergence. 

Sun and Axhausen (2016) introduced an EM-based algorithm to infer product multinomial mixture models used to

model high-dimensional categorical transportation data. In principle, this algorithm provides solution to a special case of

the proposed hierarchial mixture problem when there is only one level. In our case where each level is characterized by

a product multinomial, we can integrate the decomposition in Sun and Axhausen (2016) to the EM solution provided by

Vermunt (2008) , which presented an adapted EM algorithm for a general multilevel latent class model. By treating the class

membership variables z (both z i and z ij ) as missing values, we can write down the joint distribution of x and z . In doing so,

we first derive the complete likelihood function for a sample x i following Eq. (3) : 

p 
(
x i , z i , z i ·;λ, μ, φ, θ

)
= 

G ∏ 

g=1 

⎡ 

⎣ λg 

h ∏ 

k =1 

φ( k ) 

x k 
i 
g 

n i ∏ 

j=1 

⎡ 

⎣ 

M ∏ 

m =1 

[ 

μgm 

K ∏ 

k = h +1 

θ ( k ) 

x k 
i j 

gm 

] I ( z i j = m ) 
⎤ 

⎦ 

⎤ 

⎦ 

I ( z i = g ) 

, (5) 

where z i · represents the collection of z ij for all individuals, and I (e ) is an indicator function which equals to 1 if e is true

and 0 otherwise. 

With this formulation, the complete log-likelihood function can be decomposed into a sum of local terms: 

log L 

(
λ, μ, φ, θ| x , z 

)
= 

N ∑ 

i =1 

G ∑ 

g=1 

I ( z i = g ) 

[ 

log λg + 

h ∑ 

k =1 

log φ( k ) 

x k 
i 
g 

+ 

n i ∑ 

j=1 

M ∑ 

m =1 

I 

(
z i j = m 

)[ 

log μgm 

+ 

K ∑ 

k = h +1 

log θ ( k ) 

x k 
i j 

gm 

] ] 

. (6) 

Taken together, the expectation of complete data log-likelihood function with respect to the latent variable z becomes 

E z | x , λ, μ, φ, θ

[
log L 

(
λ, μ, φ, θ

)]
= 

N ∑ 

i =1 

G ∑ 

g=1 

γ g 
i 

[ 

log λg + 

h ∑ 

k =1 

log φ( k ) 

x k 
i 
g 

] 

+ 

N ∑ 

i =1 

G ∑ 

g=1 

n i ∑ 

j=1 

M ∑ 

m =1 

γ g 
i 
ρgm 

i j 

[ 

log μgm 

+ 

K ∑ 

k = h +1 

log θ ( k ) 

x k 
i j 

gm 

] 

. 

(7) 

where γ g 
i 

= E z | x , λ, μ, φ, θ[ I ( z i = g ) ] = p 
(
z i = g| x i ;φ, θ

)
is the responsibility that household-level class g takes for household i

and ρgm 

i j 
= E z | x , λ, μ, φ, θ

[
I 

(
z i j = m | z i = g 

)]
= p 

(
z i j = m | x i j , z i = g; θ

)
is the responsibility that individual-level class m takes for

individual j . Here, responsibility refers to the expected value of a latent variable given current estimates of the parameters.

We summarize the overall EM procedure as follows: 
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E-step Compute the responsibility γ g 
i 

and ρgm 

i j 
using Bayes’ theorem 

γ g 
i 

= 

λg 

∏ h 
k =1 φ

( k ) 

x k 
i 
g 

[ ∏ n i 
j=1 

[ ∑ M 

m =1 μgm 

[ ∏ K 
k = h +1 θ

( k ) 

x k 
i j 

gm 

] ] ] 
∑ G 

g=1 λg 

∏ h 
k =1 φ

( k ) 

x k 
i 
g 

[ ∏ n i 
j=1 

[ ∑ M 

m =1 μgm 

[ ∏ K 
k = h +1 θ

( k ) 

x k 
i j 

gm 

] ] ] , (8)

and 

ρgm 

i j 
= 

μgm 

∏ K 
k = h +1 θ

( k ) 

x k 
i j 

gm ∑ M 

m =1 μgm 

∏ K 
k = h +1 θ

( k ) 

x k 
i j 

gm 

. (9)

M-step Update parameter φ, θ, λ and μ by maximizing the expectation of complete data log likelihood function in

Eq. (7) . Solving this maximization problem gives the following updating rules: 

• For each household-level class g , each individual-level class m , each element in θgm 

, the new estimate of θ ( k ) 
c k gm 

is

given by 

θ ( k ) 
c k gm 

= 

∑ N 
i =1 

∑ n i 
j=1 

I 

(
x k 

i j 
= c k 

)
× γ g 

i 
ρgm 

i j ∑ N 
i =1 

∑ n i 
j=1 

γ g 
i 
ρgm 

i j 

. (10)

• For each household-level class g , update λg with 

λg = 

∑ N 
i =1 r 

g 
i ∑ N 

i =1 

∑ G 
g=1 r 

g 
i 

= 

∑ N 
i =1 r 

g 
i 

N 

. (11)

• For each combination of household-level class g and individual-level class m , update μgm 

with 

μgm 

= 

∑ N 
i =1 

∑ n i 
j=1 

γ g 
i 
ρgm 

i j ∑ N 
i =1 

∑ n i 
j=1 

∑ M 

m =1 γ
g 

i 
ρgm 

i j 

. (12)

The EM algorithm starts with random initial values for λ, μ, φ, and θ. Then, it performs the E-step and M-step updating

rules in each iteration. The algorithm stops until certain convergence criterion is met. It should be noted that in the E-step,

the expectation of latent variable (responsibility) is updated given the current estimate of all parameters; in the M-step, the

parameters are computed given the updated responsibility values. 

In general, this model implies that each household-level class g has its own individual-level latent classes. Therefore,

we actually introduce G × M latent classes in total at the individual level. The total number of parameters in this model is

D f = ( G − 1 ) + G × ( M − 1 ) + G × ∑ h 
k =1 ( d k − 1 ) + G × M × ∑ K 

k = h +1 ( d k − 1 ) . The four terms are degrees of freedom in λ, μ,

φ, and θ, respectively. As we can see, the total number of free parameters could be huge when G and M are large. 

In the general multilevel latent class framework, Vermunt (20 03, 20 08) suggest to use universal latent classes at the

individual level to simplify the model. In terms of population structure, two household-level classes may share a similar

individual-level class composition. Thus, when defining individual-level latent classes, we can actually borrow information

across different household latent classes. This can be achieved by restricting atoms θ to be universal across all household

classes, and thus we capture the household-individual class association by only altering the weight parameter μgm 

. By doing

so we can borrow information across classes and avoid overfitting when the number of observations is limited. This also

makes the generalization power of this model stronger. Following this idea, we redefine individual-level latent classes to be

universal across household-level classes. This assumption can greatly reduce the total number of parameters and help us

obtain more meaningful components. We present this adapted version in the following subsection. 

3.4. Universal individual classes 

The universal individual class assumption means that different household-level classes share the same individual-level

latent classes (i.e., θ (k ) 
c k g 1 m 

= θ (k ) 
c k g 2 m 

, ∀ g 1 = 1 , . . . , G, ∀ g 2 = 1 , . . . , G, ∀ m = 1 , . . . , M, ∀ k = h + 1 , . . . , K). In other words, we

can define θm 

= { θ (k ) 
c k m 

: k = h + 1 , . . . , K, c k = 1 , . . . , d k , m = 1 , . . . , M} instead of using θgm 

. The difference among these

household classes in generating individuals can be fully captured by the variation in μgm 

. The degrees of freedom in θm

changes from G × M × ∑ K 
k = h +1 (d k − 1) to M × ∑ K 

k = h +1 (d k − 1) , and the total number of parameters in this model becomes

D f = (G − 1) + G × (M − 1) + G × ∑ h 
k =1 (d k − 1) + M × ∑ K 

k = h +1 (d k − 1) . 

To estimate this new model, we can simply replace θ (k ) 

x k 
i j 

gm 

with θ (k ) 

x k 
i j 

m 

in Eqs. (8) , (9), (11) , and (12) . And the new updating

rule for θ (k ) 

x k 
i j 

m 

becomes 

θ ( k ) 
c k m 

= 

∑ N 
i =1 

∑ G 
g=1 

∑ n i 
j=1 

I 

(
x k 

i j 
= c k 

)
× γ g 

i 
ρgm 

i j ∑ N 
i =1 

∑ G 
g=1 

∑ n i 
j=1 

γ g 
i 
ρgm 

i j 

. (13)
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Table 2 

Household- and individual-level attributes in HITS. 

Level Attribute Categories ( d k ) Values 

household Dwell ( x 1 
i 
) 7 HDB 1–2 rooms; HDB 3 rooms; HDB 4 rooms; HDB 5/ + rooms; Condo; Landed property; Other. 

Ethnicity ( x 2 
i 
) 4 Chinese; Indian; Malay; Other. 

Car ( x 3 
i 
) 2 Yes; No. 

Npax ( x 4 
i 
) 6 1; 2; 3; 4; 5; 6. 

individual Age ( x 5 
i j 

) 14 6–9 yrs; 10–14 yrs; 15–19 yrs; 20–24 yrs; 25–29 yrs; 30–34 yrs; 35–39 yrs; 40–44 yrs; 45–49 yrs; 

50–54 yrs; 55–59 yrs; 60–64 yrs; 65–69 yrs; 70 yrs and above. 

Sex ( x 6 
i j 

) 2 Female; Male. 

Income ( x 7 
i j 

) 11 SGD: $1–999; $10 0 0–1499; $150 0–1999; $20 0 0–2499; $250 0–2999; $30 0 0–3999; $40 0 0–4999; 

$50 0 0–5999; $60 0 0–7999; $80 0 0 and above; No income. 

License ( x 8 
i j 

) 2 Yes; No. 

Pass ( x 9 
i j 

) 2 Citizen; PR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This adapted model is used to implement the product multinomial hierarchical mixture framework for our case study. 

3.5. Rejection sampling to model within household relationships 

This hierarchical latent class model provides us with a simple and flexible way to capture the interactions and associa-

tions among a large number of household- and individual-level attributes. However, increase the simplicity and flexibility

of this model, a general assumption is made that individuals within a household are independent given the household class

label (see Eq. (2) ). As a result, the generated individuals within a household cannot fully characterize individual associations

and relationships. To correct this, we suggest to use rejection sampling as a postprocessing step to reproduce household

structures. 

We will provide the details of this rejection sampling step in the case study ( Section 4 ), and illurstrate how this rejection

sampling step is able to reproduce individual associations and how it is integrated into the population synthesis framework.

4. Case study 

In this section, we apply the product multinomial hierarchical mixture framework on the HITS data in Singapore.

Model inference and synthetic population generation are implemented in MATLAB and the codes are available at https:

//github.com/lijunsun/population _ synthesis _ hierarchical . In addition, we also introduce a postprocessing step based on re-

jection sampling to further account for the structural relationships among household members. By applying this rejection

sampling scheme on the synthetic population, the remaining set not only characterizes the within and cross level depen-

dencies among household- and individual-level attributes, but also reproduces structural relationships among household 

members. 

4.1. Household interview travel survey (HITS) data 

The survey was conducted by the Singapore’s Land Transport Authority in 2012. HITS data is an essential input for urban

and transportation modeling/planning in Singapore and it is widely used among urban/transportation planning agencies and

research institutes. In general, the survey collects comprehensive demographic/socioeconomic information at both household 

and individual levels, together with a list of trips/activities of each individual on a particular weekday. The 2012 survey

covers 35,714 individuals from 9635 households (about 1% of the total population). The average household size in the survey

is 3.71 and the largest size is 11. 

Before applying the model, we modify the raw survey data to fit the multilevel latent class modeling framework. We

first consider the number of people in household ( Npax ) a categorical variable. For simplicity, we restrict the number of

categories by removing those large households with more than 6 people from the sample. We also discard children below

five years old from the data set, since their individual level attributes are all registered as NULL in the survey. The modified

data set contains 8906 households and 27,894 individuals. Table 2 summarizes the household- and individual-level attributes

in the modified HITS. We refer this modified data set as PUMS in the following of this paper. 

4.2. Model selection 

The proposed model has two hyperparameters—the number of household-level latent classes G and the number of

individual-level latent classes M . These two numbers determine the degrees of fitting and generalization of the model. The

model may not have enough capacity to capture all structural association when G and M are small, while large G and M

increase the risk of overfitting. 

https://github.com/lijunsun/population_synthesis_hierarchical
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For model selection, we test different models by adjusting the values of G and M , and select the model with the mini-

mum Bayesian information criterion (BIC) 

BIC = −2 log L + D f log 

N ∑ 

i =1 

n i , (14)

where L is the likelihood of the model (see Eq. (4) ) and D f log 
∑ N 

i =1 n i is a penalty term for model complexity ( D f is the

total number of parameters and 

∑ N 
i =1 n i is the total number of individuals in the sample). 

In estimating the model, we set the convergence criterion of the EM algorithm to be 10 −10 on the relative change of the

final log likelihood. Given the definition of BIC, with increasing number of latent classes, the first term −2 log L decreases

while the penalty terms increases. Therefore, there exists an optimal combination of ( G, M ) that minimizes the overall BIC

value. To get this optimal combination, we first try different values of G and M and locate a feasible range of G and M .

We find that the likelihood term dominates when G, M < 5 and the penalty term dominates when G, M > 25. Therefore, we

define a feasible range as G, M = 5 , . . . , 25 and then performed a grid search. One well-known drawback of the EM algorithm

is that it may converge to a local optimum instead of a global one. To avoid this, we repeat the estimation procedure 20

times with different initial values for each combination of ( G, M ), and only keep the one with the maximum log-likelihood

value as the final result. The MATLAB implementation takes about 0.05s per iterations and about 50 0–20 0 0 iterations to

converge. The estimation can be further sped up by parallelizing the 20 runs for each combination. The minimum BIC value

of 1.8877 × 10 5 is obtained with G = 12 and M = 14 . 

4.3. Synthetic population generation 

With the estimated model, a synthetic household can be created by sampling from Eq. (3) . We illustrate this generation

process using a household i as an example. The first step is to sample class labels z i from multinomial distribution p(z i =
g) = λg . Then, the household-level attributes ( x 1 

i 
, . . . , x h 

i 
) are sampled from product multinomial distribution p(x 1 

i 
, . . . , x h 

i 
| z i =

g) = 

∏ h 
k =1 φ

(k ) 

x k 
i 

g 
. Since the joint distribution of household-level attribute is only affected by z i , the sampling of x 1 

i 
, . . . , x h 

i 
in

all households ( i = 1 , . . . , N) can be performed in a grouped manner ( G groups). Note that in this step the total number of

people inside a household Npax ( x 4 
i 
) is also generated, and this value is used in generating individuals. 

We next generate individuals inside household i . One assumption we have is that individuals are conditionally indepen-

dent given household class label z i = g. Here we take the generation of a single individual j as an example. Similar to the

generation of households, we start with assigning j an individual class label z ij by drawing from the multinomial distri-

bution p(z i j = m | z i = g) = μgm 

conditional on z i = g. After this, we sample individual attributes from product multinomial

distribution p(x h +1 
i j 

, . . . , x K 
i j 
| z i j = m ) = 

∏ K 
k = h +1 θ

( k ) 

x k 
i j 

m 

. A full synthetic household can be created by applying this procedure to

all individuals j = 1 , . . . , x 4 
i 

in household i . It should be noted that with the universal individual class assumption, the prod-

uct multinomial distribution for individual attributes is only conditional on z i j = m (without household labels). Therefore,

same as the sampling of household, the sampling of all individuals across all households can be also performed in M groups.

To assess the performance of the proposed synthesis framework, we created 10 sets of synthetic population with the

same number of household as in the PUMS ( N = 8906 ). Compared with 

∑ N 
i =1 n i = 27 , 894 , the total number of individuals

in the synthetic population ranges from 27,722 to 28,057. Fig. 1 shows the marginal distributions for both household-level

and individual-level variables, averaged over the 10 synthetic sets. As a comparison, we also show the empirical marginal

distributions from the PUMS correspondingly. The first row in Fig. 1 shows the marginal distributions of all household-level

variables, and the second row provides the marginal distribution of individual-level variables. As can be seen, we obtain a

very good match for all the marginals at both levels. 

To further quantify model consistency, we compare multi-dimensional marginals and the full contingency table from the

averaged synthetic population against those computed from the PUMS. In doing so, we compute marginal distributions for

different number of variables (dimensions). We define a 1-dimension (1D) marginal as P ( x ′ ) for a single attribute x ′ and a

2-dimension (2D) marginal as bivariate marginal P ( x ′ , x ′ ′ ) for a pair of attributes ( x ′ , x ′ ′ ). With this definition, a 4D marginal

at the household level is the same as the joint distribution p(x ) = p(x 1 , x 2 , x 3 , x 4 ) of all household-level attributes. The

first panel in Fig. 2 shows all those 1D marginals at the household level by summarizing all the bar plots in the first row of

Fig. 1 into a single scatter plot (with 7 + 4 + 2 + 6 = 19 dots). The second panel (2D-household) summarizes all combinations

of the bivariate marginals (6 in total, including p ( x 1 , x 2 ), p ( x 1 , x 3 ), p ( x 1 , x 4 ), p ( x 2 , x 3 ), p ( x 2 , x 4 ) and p ( x 3 , x 4 )) of the synthetic

data and the original data. The rest panels correspond to the other multi-dimensional marginal distributions for household

and individual variables. As we can see from Fig. 2 , the synthetic data matches the structure of the PUMS very well, even

for the full joint distributions (4D for household attributes [ 7 × 4 × 2 × 6 = 336 dots] and 5D for individual attributes [ 14 ×
2 × 11 × 2 × 2 = 1232 dots]), suggesting that the hierarchical mixture framework characterizes the underlying population

structure accurately. 

To quantitatively assess the model’s performance in preserving the joint association among household- and

individual-level attributes, we estimate the model-based Cramer’s V for both the PUMS and the synthetic data
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Fig. 1. Marginal distributions obtained from the PUMS and synthetic population for household-level attributes (first row) and individual-level attributes 

(second row). 

Fig. 2. Marginal distributions aggregated for different number of dimensions for household-level attributes (first row) and individual-level attributes (sec- 

ond row). 

 

 

 

 

 

 

 

 

 

( Dunson and Xing, 2012 ): 

ρkl = 

√ √ √ √ √ 

1 

min { d k , d l } − 1 

d k ∑ 

c k =1 

d l ∑ 

c l =1 

(
ϕ c k c l − ϕ̄ 

( k ) 
c k 

ϕ̄ 

( l ) 
c l 

)2 

ϕ̄ 

( k ) 
c k 

ϕ̄ 

( l ) 
c l 

, (15) 

where ϕ x k x l is the bivariate distribution on x k and x l and ϕ̄ 

( k ) 

x k 
is the marginal distribution of variable x k . Cramer’s V is often

used to measure the joint association between two categorical nominal variables. The value of ρkl ranges from 0 to 1, with

ρkl = 0 when the two variables are independent. A high value of ρkl indicates strong dependency between variables x k and

x l . 

Based on the PUMS, we create a new table by flattening household-level attributes (i.e., assigning household-level at-

tributes to each individual and thus removing the hierarchical structure). Fig. 3 (a) shows the empirical pairwise Cramer’s V

among both household-level attributes ( dwelling type, ethnicity, car availability , and total number of members ) and individual-

level attributes ( age, sex, income, driving license , and pass type ). The upper-left square (4 × 4) shows the degree of association

among household-level attributes. The two strongest association values come from Dwell & Car (with ρ = 0 . 366 ) and Car

& Npax (with ρ = 0 . 205 ). The lower-right square (5 × 5) shows pairwise association among individual-level attributes. We

found that individual-level attributes in general demonstrate stronger association than household-level attributes. There are 
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Fig. 3. Joint association of both household-level and individual-level attributes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 pairs having ρ > 0.200, including Income & License (with ρ = 0 . 494 ), Age & License (with ρ = 0 . 411 ), Sex & License (with

ρ = 0 . 281 ), Age & Pass type (with ρ = 0 . 272 ), Sex & Income (with ρ = 0 . 234 ), and Age & Income (with ρ = 0 . 228 ). In addi-

tion to the within-level association, the upper-right (or the lower-left) matrix shows the cross-level association. In this case,

we observe strong association values for Ethnicity & Pass type (with ρ = 0 . 413 ), Car & License (with ρ = 0 . 322 ), and Dwell &

License (with ρ = 0 . 237 ). 

As a comparison, Fig. 3 (b) shows the same association matrix computed using the synthetic population (averaged over 10

sets of populations). We find that the synthetic population generated by the hierarchical mixture model gives a very similar

ρ matrix to the empirical one computed using the PUMS. This indicates that the conditional distribution μgm 

can capture

very well the diversity of individual distributions across households. Overall, the above analysis shows that the proposed

framework generalizes the underlying structure efficiently and accurately, not only capturing the association within each

level, but also preserving the cross-level association. 

4.4. Individual association within households 

In general, we see that the household/individual attribute associations are well-modeled by the product multinomial

hierarchical mixture model in Eq. (3) . However, considering that all individuals are conditionally independent given z i : 

p 
(
x i 1 , . . . , x in i | z i 

)
= 

n i ∏ 

j=1 

p 
(
x i j | z i 

)
, (16)

the inter-person relationships/associations within a household is essentially ignored. 

This assumption makes the inference easy to perform, and to certain extent it still can capture some inter-person relation

provided through the interaction term μgm 

. However, in real population data this assumption is often violated, as a person in

a household plays a unique role (e.g., husband, wife , and child ) and there exist strong structural relationships among different

individuals. For example, most two-person households in the PUMS are couples (household head and spouse), and the

empirical probability of one being male and the other being female is p 
(
x 6 

i 1 
� = x 6 

i 2 

)
= p 

(
x 6 

i 1 
= 1 , x 6 

i 2 
= 2 

)
+ p 

(
x 6 

i 1 
= 2 , x 6 

i 2 
= 1 

)
=

0 . 86 . However, in the synthetic cases where household members are sampled independently given z i , we have p 
(
x 6 

i 1 
� = x 6 

i 2 

)
=

0 . 50 . Therefore, this type of joint association/relationship is missed by sampling individuals independently using Eq. (2) . 

To further demonstrate this effect, we create a subset by selecting two-person households from the PUMS and quantify-

Cramer’sV of the two persons’ attributes. We refer to the two persons in a household as A and B. As a comparison, we also

create a subset of two-person household from the synthetic population. The first two panels in Fig. 4 show the values of ρ
among attributes of person A and B in the original PUMS and the synthetic population, respectively. The third panel shows

their absolute difference | ρ1 − ρ2 | . As we can see, there is no much difference in terms of each individual. However, in the

matrix of joint association between A and B, we observed clear difference for age - and sex -related combinations and the

most obvious difference is observed on ρsex A , sex B . In fact, the sex attributes of A and B are highly dependent in the PUMS

with ρ = 0 . 72 , while in the synthetic population they are almost independent with ρ = 0 . 01 . This suggests that in the syn-

thetic data we have generated more same-sex two-person households than expected due to the conditional independence

assumption in Eq. (16) . 

In order to correct this bias and capture these inter-person relationships, we propose to apply rejection sampling as a

postprocessing step on the synthetic population. To illustrate this step, we use these two-person households as an example.

Since most differences in Fig. 4 come from age - and sex -related combinations, we use these two attributes to build the

acceptance-rejection rule. In doing so, we first propose a new distribution f ( y i 1 , y i 2 ), where y i 1 is the absolute age difference

( y i 1 = 

∣∣x 5 
iA 

− x 5 
iB 

∣∣) and y i 2 is the absolute sex difference ( y i 2 = 

∣∣x 6 
iA 

− x 6 
iB 

∣∣), considering the exchangeability of A and B. And

next we compute the joint distribution of y 1 and y 2 from the synthetic population generated without individual association

and consider it the proposal distribution f ( y , y ). The target distribution f ( y , y ) is obtained by summarizing y and y 
1 1 2 2 2 2 1 2 
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Fig. 4. Joint association of individual-level attributes between two people in the same household. (A: age , S: sex , I: income , L: license , and P: pass type ). 

Fig. 5. Proposal distribution f 1 ( y 1 , y 2 ) and target distribution f 2 ( y 1 , y 2 ). 

Fig. 6. Joint association of two individuals in the same household after postprocessing by rejection sampling. (A: age , S: sex , I: income , L: license , and P: 

pass type ). 

 

 

 

 

 

 

 

 

in the PUMS data into a contingency table. We define M = max 
y i 1 ,y i 2 

f 2 (y 1 ,y 2 ) 
f 1 (y 1 ,y 2 ) 

. In the case study, we have M = 2 . 97 . In performing

the rejection sampling, we accept a household i with probability αi = 

f 2 (y i 1 ,y i 2 ) 

M× f 1 (y i 1 ,y i 2 ) 
. 

The first panel in Fig. 5 shows the proposal distribution f 1 ( y 1 , y 2 ) obtained from the synthetic population without con-

sidering those A-B associations. And the second panel shows the target distribution f 1 ( y 1 , y 2 ) obtained from the PUMS. After

performing the rejection sampling algorithm, we obtain a new set of two-person households. Fig. 6 shows the comparison

for two-person households between the PUMS and the corrected synthetic population. As can be seen, the cross individual

association is well captured by introducing the rejection sampling scheme and the difference becomes negligible. We con-

sider this new set the final synthetic population for two-person households. The same procedure can be applied for other

household types (e.g., three-person). A critical problem here is how to define the format f of the proposal/target distribu-
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tions used in rejection sampling. In the two-person example, we simplify the comparison of complex distribution p ( x ) into

the comparison of a simple bivariate distribution f ( y 1 , y 2 ), making the acceptance-rejection scheme easy to implement and

maintain a high acceptance rate. For other applications, we also suggest to use age - and sex -related transformation and to

limit the number of transformed variables to avoid the curse of dimensionality in conducting rejection sampling. 

After this step, we obtain a pool of synthetic households, which matches the underlying structural distribution of the

PUMS. Still, the marginal distributions are not integrated yet. In producing a target population with known marginal dis-

tributions (e.g., population for a particular region), Casati et al. (2015) applied generalized raking as a postprocessing step

on the synthetic population pool generated from MCMC to reweight household and create a target population that matches

those marginals ( Deville et al., 1993 ). Here, we may take the pool as a seed and apply generalized raking to create popu-

lation matching those known marginals. This can be also done by just take the known marginals as a target distribution

and apply rejection sampling as another filtering step. The final synthetic population will match not only the statistical

properties, but also the known marginals. 

5. Conclusion and discussion 

In this paper, we bring the product multinomial hierarchical mixture framework to the context of synthetic population

with a two-level structure (household-individual) coded in categorical attributes. This is the most common structure for

census and household-based surveys. In this setting, our focus is to create a probabilistic model to capture and generalize

the joint distribution for all variables at both levels in the structure. 

We create such a model by integrating three different component models. The first is probabilistic CP factorization. The

function of this model is to capture a multivariate distribution of nominal categorical variables as a mixture of product

multinomials. The second model is the multilevel latent class model. The objective of this model is to add a layer to con-

nect household classes and individual classes by using a conditional distribution. In particular, we propose to use universal

classes at the individual level for model generalization and avoiding overfitting, and use the conditional distribution of indi-

vidual class on household class to capture the interaction/association between the two levels. This model can be efficiently

estimated using an EM algorithm, and synthetic households can be generated by drawing samples for the estimated model.

We apply this model on Singapore’s national travel survey data—HITS, which includes 4 household-level attributes and 5

individual-level attributes. This case study demonstrates great potential of the proposed model in reproducing both within-

and cross-level associations among all variables. However, given the conditional independence assumption of household

members on household latent classes, the structural relationships among household members are not well captured. To

amend this, we apply rejection sampling as the third component in the framework to reproduce structural relationships and

identify the role of each member in a synthetic household. With this process, one can generate a large pool of population

that reproduces statistical properties of the given PUMS. The pool of population (e.g., 1 million synthetic household) could

serve as a base to resample a new population matching those known marginals. For example, if interested in creating

synthetic population for a particular region with some marginal controls at the household-/individual-level, one can apply

another step of generalized raking ( Deville et al., 1993; Casati et al., 2015 ) or impose another rejection sampling procedure

that takes the known marginals as target distributions. We refer interested readers to Casati et al. (2015) for an example of

population synthesis that uses generalized raking to reweight samples in order to match marginal controls. 

This paper enriches existing literature on population synthesis problem, in particular about modeling the hierarchical

household-individual structure. While in most previous practices one need to develop model-specific strategies to account

for household-individual associations ( Pritchard and Miller, 2012; Anderson et al., 2014 ), our model provides a natural so-

lution for this problem. In this sense, the application of this framework is beyond population synthesis, since this type of

hierarchical data structure is common in social science research and survey analysis. There are several directions for future

research. The first is to remove the restriction on categorical nominal variables, which may help the modeling of continuous

attributes such as age and income. In this case, we may use some parametric distributions for continuous variables (e.g.,

Beta and Gaussian) to capture latent classes using only a few parameters. The second direction is to deal with missing data.

This is particularly important if the input PUMS comes from surveys with missing or partial observations. For this purpose,

we can further add an imputation step within the modeling framework. The third direction is to better integrate the as-

sociation of household members into the modeling framework. While the current framework applies rejection sampling as

postprocessing step to model the interdependency among household members, a potential direction is to integrate member

association in the core model using other statistical approaches. 
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