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a b s t r a c t 

The rapid developments of ubiquitous mobile computing provide planners and researchers 

with new opportunities to understand and build smart cities by mining the massive 

spatial-temporal mobility data. However, given the increasing complexity and volume of 

the emerging mobility datasets, it also becomes challenging to build novel analytical 

framework that is capable of understanding the structural properties and critical features. 

In this paper, we introduce an analytical framework to deal with high-dimensional human 

mobility data. To this end, we formulate mobility data in a probabilistic setting and con- 

sider each record a multivariate observation sampled from an underlying distribution. In 

order to characterize this distribution, we use a multi-way probabilistic factorization model 

based on the concept of tensor decomposition and probabilistic latent semantic analysis 

(PLSA). The model provides us with a flexible approach to understand multi-way mobility 

involving higher-order interactions—which are difficult to characterize with conventional 

approaches—using simple latent structures. The model can be efficiently estimated using 

the expectation maximization (EM) algorithm. As a numerical example, this model is ap- 

plied on a four-way dataset recording 14 million public transport journeys extracted from 

smart card transactions in Singapore. This framework can shed light on the modeling of 

urban structure by understanding mobility flows in both spatial and temporal dimensions. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Urban transportation systems are the backbone of cities, allowing people to have diverse types of interactions through

social activities such as work, school, shopping and leisure. To provide people-centric transportation and to enhance the

efficiency of spatial interaction become the primary goals of transportation planning. As the first step towards an efficient

transportation system, understanding and modeling urban transportation demand is crucial to fleet management, infrastruc-

ture design, epidemic control, urban planning and policy making. In the last decades, the developments of transportation

demand modeling have created a variety of landmark works, including the classic four-step model and the recent activity-

based model ( Axhausen and Gärling, 1992; Bhat and Koppelman, 2003 ). These sophisticated approaches normally involve

the estimation of a parametric spatial interaction model using available data and then apply the estimated model to predict
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demand at a population scale. To bring these models into practice, collecting credible data recording individual’s transporta-

tion activities from travel diaries and household surveys becomes the first critical step. However, the developments of novel

transportation demand models still suffer from the small sampling shares, high cost, infrequent periodicity and limited ac-

curacy of the survey data. 

With the fast development of information and communication technologies (ICT) and ubiquitous mobile computing, large

quantities of digital traces that register individual human activities at both spatial and temporal scales have become avail-

able. These datasets not only help planners and researchers understand cities as complex systems, but also allow practition-

ers to understand cities through data-centric technologies ( Batty et al., 2012 ). In terms of urban transportation, such data

set allows us to further reveal the spatial-temporal structure of cities inherited from human mobility ( González et al., 2008;

Roth et al., 2011; Sun et al., 2015 ). 

The emergence of such mobility data indeed brings us new opportunities to integrate more information into decision

making. However, the complexity of the data also increases with the dimensions of its contents, which imply complex

dependence and higher-order interactions among space, time and individual social-demographic attributes. Given the in- 

creasing volumes and complexity of datasets, retrieving important information and critical features from them becomes

challenging. It is crucial to developing advanced data-driven approaches and models to enrich our understanding about

urban transportation systems and human mobility patterns from the large amount of data. 

This paper is dedicated to providing a data-driven approach to characterize the collective mobility patterns from high-

dimensional structured datasets. Considering the multivariate nature of urban mobility data, we focus on depicting the com-

plex dependence and interactions with a probabilistic framework, which provides us with a natural way to represent the

structural properties and uncertainty in the data. To this end, we concentrate on a multi-way categorical setting, which al-

lows us to summarize the high-dimensional data into contingency tables and tensors ( Agresti, 2002; Kolda and Bader, 2009 ).

In a probabilistic setting, collective mobility data can be modeled in the sense that each mobility record is a sample gener-

ated from a universal multivariate distribution. The main contribution of this paper is to introduce an analytical framework

to deal with multi-dimensional transportation/mobility data. In so doing, we adopt statistical techniques to better inter-

pret human behavior and urban dynamics. To better understand the structure of urban mobility, we apply a factorization

model to decompose high-dimensional mobility data into important patterns, from which we can extract key information

by reasoning about the semantics of regions and activities. Based on this information, we can further reveal the dynamics of

cities. Using a real large-scale dataset from public transport systems in Singapore, we find both travel behavior and spatial

configuration of the city are well structured. 

The remainder of this paper is organized as follows. In Section 2 , we review relevant papers on revealing urban struc-

ture using various spatial-temporal datasets and in particular the developments of applying tensor decomposition on high-

dimensional urban data analytics. Section 3 introduces the framework of probabilistic factorization on multivariate trans-

portation data based on the concept of Tucker decomposition and multi-way probabilistic latent semantic analysis (PLSA).

The expectation-maximization (EM) algorithm is applied to efficiently infer the model. In Section 4 , we present a case study

of applying the model on a four-way dataset (time, passenger type, origin zone and destination zone) extracted from public

transport smart card transactions in Singapore. We also discuss the implications and insights of the experiment. Finally,

Section 5 summarizes our key findings and discusses the potential application of such a data-driven approach in helping us

better understand urban dynamics. 

2. Literature review 

With the recent advances in ICT, large quantities of individualized data—such as call detail record (CDR), geo-referenced

social media data, Global Positioning System (GPS) trajectories and transit smart card transactions—are generated through

various social activities. Thanks to the rich spatial-temporal information in such datasets, analyzing and modeling the

spatial-temporal structure of cities from a variety of proxies on human activities have become an emerging topic in ge-

ography, urban and transportation research (e.g., Calabrese et al., 2011; Jiang et al., 2012; Sun et al., 2012; Yuan et al., 2012;

Coffey and Pozdnoukhov, 2013; Allahviranloo and Recker, 2013; Wang et al., 2014; Sun et al., 2015; Han and Sohn, 2016 ). In

the meanwhile, the dimensions of information also become richer and richer. For example, smart card transactions contain

not only spatial-temporal information of trips, but also some basic social-demographic profiles of cardholders. In most cases,

such data is well-structured with pre-defined fields and each record can be considered a draw of multivariate variables. 

A tensor representation allows us to summarize multivariate categorical data into a multi-dimensional array ( Kolda and

Bader, 2009 ). The goal of tensor decomposition is to efficiently reproduce the complex dependence and higher-order interac-

tions between different modes in multivariate data by using simple structures with relatively few parameters. As a natural

choice in dealing with multi-dimensional data, tensor decomposition becomes increasingly important in interpreting the 

underlying structure of complex datasets. It has been successfully applied in a variety of fields, such as signal processing,

computer vision, online recommendation, web data mining, psychometrics and survey analysis ( Kolda and Bader, 2009; Sun

et al., 2006 ). 

Given its strength in retrieving information from large datasets, tensor decomposition also attracts more and more at-

tentions in the field of transportation data analysis. For example, Tan et al. (2013) integrated Tucker decomposition and EM

algorithm to efficiently impute the missing values in a four-way tensor of traffic data (by link, day, hour and a five-minute

domain). The numerical experiments suggest that the tensor-based method shows superior performance compared with 
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other state-of-the-art approaches. Han and Moutarde (2014) proposed to use non-negative tensor decomposition to identify

spatial-temporal patterns of traffic states. The authors applied non-negative CANDECOMP/PARAFAC (CP) decomposition on a

three-way (link × sampling step × time period) tensor constructed from simulated traffic state data. 

With the emergence of individual-based spatial-temporal datasets, tensor decomposition also plays an increasingly im-

portant role in urban computing and travel behavior research. For instance, mobility data obtained from taxis trajectories,

smart phones and transit smart cards offer researchers new opportunities to study collective mobility patterns ( Jiang et al.,

2012; Ma et al., 2013; Sun et al., 2013 ). In a two-dimensional setting, Reades et al. (2009) applied principle component

analysis (PCA) on a zone by time matrix to identify eigenplaces from mobile phone data. Peng et al. (2012) transformed

taxi trips into a zone × time matrix and applied a non-negative matrix factorization (NTF) model ( Lee and Seung, 1999 )

to identify basic spatial and temporal patterns of human mobility. The factorization suggests that taxi trips in Shanghai are

essentially characterized by three purposes based on their temporal profiles: home-to-work, work-to-work, and others such

as leisure activities. Integrating taxi trajectory data with other urban sensing data, Zhang et al. (2013) modeled urban refuel-

ing events as a three-way gas-station × hour × day tensor and adapted Tucker decomposition to take additional contextual

features of gas stations into account. Using a large taxi trajectory dataset in Beijing, Wang et al. (2014) modeled collective

mobility as a three-way (origin × destination × time, with a large size of 651 × 651 × 24) tensor, with each cell ( i , j , k )

corresponding to traffic volume from zone i to zone j at time domain k . To better fit the urban analytics framework and

interpret the results, the authors applied a regularized non-negative Tucker decomposition approach to reveal the principle

patterns on each mode. Fan et al. (2014) utilized non-negative CP decomposition on three-way (region × day × time) tensor

constructed from a large mobile phone GPS log dataset. The authors performed regularization on the region mode and the

tensor is filled up by measuring the proportion of GPS points across all regions given time and day. The tool was used to

quantify the fluctuation of urban mobility before and after the Great East Japan Earthquake in 2011. 

Despite applying tensor decomposition directly, the analysis of multi-way categorical data also demonstrates an increas-

ing interest in a probabilistic context in statistical modeling and machine learning. For instance, Hofmann (1999) introduced

probabilistic latent semantic analysis (PLSA), which in principle is equivalent to a non-negative matrix factorization model

when the Kullback-Leibler divergence is minimized ( Ding et al., 2008 ). The model can be also extended to a multi-way

scenario, which is often referred to as multi-way probabilistic latent semantic analysis ( Peng and Li, 2011; Zafeiriou and

Petrou, 2011 ). In order to better model large sparse tabular data, Dunson and Xing (2012) and Bhattacharya and Dunson

(2012) proposed non-parametric Bayesian factorizations using Markov chain Monte Carlo (MCMC) algorithm. Essentially, the

two models are in line with the concepts of non-negative CP and Tucker decompositions, respectively. Owing to the advan-

tages of the Bayesian paradigm, the models are capable of handling sparse tensors/contingency tables by specifying proper

priors and adopting efficient samplers. Although these approaches are proposed with different purposes and estimation

algorithms, they all model particular type of data in a probabilistic framework. 

In this paper, we consider individual-based mobility record a multivariate observation sampled from a universal distri-

bution and apply a tucker-like PLSA framework to identify principle patterns on each mode from a large-scale transit smart

card dataset. Although performing tensor decomposition in a probabilistic context is not new by itself, this article focuses on

its application on a high-dimensional mobility dataset, revealing valuable insights in spatial-temporal-mobility interactions. 

3. Modeling framework 

In this section we present the framework on modeling multi-way urban mobility data. We assume that trips are mul-

tivariate variables sampled from a universal distribution. In order to characterize this universal distribution, we apply a

multi-way probabilistic factorization model that is able to capture the principle patterns on different modes and their joint

interactions using few latent factors in Section 3.3 . To better understand its interconnection with tensor decomposition

techniques, we first introduce the basic concepts of CP and Tucker decompositions in Section 3.2 . 

3.1. Notation 

Let x i = ( x i 1 , . . . , x im 

) � denote a trip observation, where m represents the dimension of information (i.e., number of at-

tributes in a single trips record), and d = 1 , . . . , m denotes the indices of attributes. In characterizing transit trips, an element

x i ∗ may represent the type of passenger (e.g., adult, senior and children), time of trip, origin zone, destination zone, travel

mode (e.g., bus/metro), etc. We use x = { x 1 , . . . , x n } to represent all the trip observations we have, with i = 1 , . . . , n denoting

the index of each record. 

To facilitate the factorization model, we first map all variables in trip records into the categories. In doing so, we define

x id ∈ { 1 , . . . , w d } as discrete values starting from one for attribute d . Taking passenger type as an example, we may use

x id = 1 , . . . , 3 to represent adults, senior citizens and children correspondingly. For those continuous variables, we map the

values on a discrete domain. For example, we may redefine trip start time to hours by letting x id ∈ { 1 , . . . , 24 } , with values

1, 2,…, 24 corresponding to the hour of timestamp. 

With the notations above, all the trip records x can be summarized into a m -way tensor/contingency table with dimen-

sion D = w 1 × · · · × w m 

, and each cell ( c 1 , . . . , c m 

) representing the count of observations 
∑ n 

i =1 I ( x i 1 = c 1 , . . . , x im 

= c m 

) . In

this paper, we use I ( e ) as an indicator function with I ( e ) = 1 if e is true and 0 otherwise. In other words, each cell in
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the tensor represents a particular combination of trip information and its value indicates number of trips belonging to this

combination. 

Similarly, in a probabilistic setting we can also model collective mobility using a probabilistic tensor, with each cell

representing the probability of a trip belonging to a particular cell p ( x i 1 = c 1 , . . . , x im 

= c m 

) . To facilitate the modeling and

interpretation, in this paper we adopt the probabilistic representation. 

3.2. Tensor decomposition 

In this section we briefly introduce two types of tensor decomposition techniques: CP decomposition and Tucker de-

composition. Both CP and Tucker decompositions can be considered a high-order generalization of matrix singular value

decomposition (SVD) and principle component analysis (PCA). We refer interested readers to Kolda and Bader (2009) for a

comprehensive review about tensor decomposition and its application. 

3.2.1. CANDECOMP/PARAFAC (CP) decomposition 

A N -way tensor is rank-one if it can be written as the outer product of N vectors. The CP decomposition factorizes a

tensor X into the sum of a series of rank-one tensors 

X = 

h ∑ 

k =1 

λk u 

( 1 ) 
k 

� · · · � u 

( m ) 
k 

, (1) 

where λ1 ≥ λ2 ≥ λh > 0 represent weight parameters, u 

(d) 
k 

= (u (d) 
1 k 

, u (d) 
2 k 

, . . . , u (d) 
w d k 

) � is the k th vector of dimension d and ‘ �’

denotes vector outer product. Therefore, each cell in the decomposed tensor is 

x c 1 ... c m = 

h ∑ 

k =1 

λk 

m ∏ 

d=1 

u 

( d ) 
c d k 

. (2) 

3.2.2. Tucker decomposition 

Tucker decomposition is also referred to as higher-order singular value decomposition (HOSVD) in the literature. In gen-

eral, Tucker decomposition factorizes a tensor X into a core tensor multiplied by a series of factor matrices along all modes

X = G ×1 u 

( 1 ) ×2 · · · ×m 

u 

( m ) = 

h 1 ∑ 

k 1 =1 

· · ·
h m ∑ 

k m =1 

g k 1 ... k m u 

( 1 ) 
k 1 

� · · · � u 

( m ) 
k m 

, (3) 

where ×d represents the tensor-matrix multiplication on mode d , G ∈ R 

h 1 ×···×h m is the core tensor ( g k 1 ... k m represents value

in each cell), u 

( d ) ∈ R 

w d ×h d is a factor matrix of mode d and h d is the number of patterns (vectors) in the factor matrix u 

( d ) .

The core tensor G characterizes the degree of interaction between different modes. Elementwise, we have 

x c 1 ... c m = 

h 1 ∑ 

k 1 =1 

· · ·
h m ∑ 

k m =1 

g k 1 ... k m u 

( 1 ) 
c 1 k 1 

× · · · × u 

( m ) 
c m k m 

. (4) 

Since Tucker decomposition utilizes all combinations of vectors in factor matrices ( 
∏ m 

d=1 h d joint patterns from∑ m 

d=1 h d patterns in factor matrices), it is able to capture complex dependence with few components compared with CP

decomposition. 

3.3. Probabilistic factorization model 

Given the large number of parameters, working on the probabilistic tensor directly is infeasible. A common approach

to simplify the model and reduce number of parameters is to characterize each attribute as a multinomial distribution

(categorical distribution), so that the joint distribution of x i can be modeled as using a product-multinomial. However, by

doing so the interactions among different attributes are essentially ignored and thus it becomes difficult to capture crucial

dependence in the data. 

An efficient alternative to capture those interactions is to apply latent class models, which assume that each observation

is generated from a mixture of underlying classes and each class is associated with a unique probability distribution. In

standard latent class models on categorical variables, a general assumption is that the observed x i ∗ are mutually independent

within each class. This assumption essentially simplifies the joint distribution as a mixture of product-multinomial and the

probability of observing a trip x i (i.e., the probability mass function) can be written as 

p 
(
x i | θ

)
= 

h ∑ 

k =1 

πk p k 
(
x i | θk 

)
= 

h ∑ 

k =1 

πk 

m ∏ 

d=1 

p k 
(
x id | θk 

)
, (5) 
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where h is the number of classes and π k denotes the probability that an observation belongs to class k . Each class k has a

unique set of parameters denoted by θk . Therefore, an element in the probability tensor is given by 

p(x i 1 = c 1 , . . . , x im 

= c m 

| θ) = 

h ∑ 

k =1 

πk θ
( 1 ) 
c 1 k 

× · · · × θ ( m ) 
c m k 

, (6)

where θ
(d) 
k 

= ( θ (d) 
1 k 

, . . . , θ (d) 
w d k 

) � is a w d × 1 probability vector with θ (d) 
c d k 

= p k (x id = c d ) and 

∑ w d 
c d =1 

θ ( d ) 
c d k 

= 1 . 

In summary, such latent class models impose conditional independence on each class. By summing up all classes the

model is able to capture complex interactions and dependence. In principle, this model is equivalent to a non-negative CP

(NNCP) decomposition model as in Eq. (1) , in which all elements are non-negative values ( Dunson and Xing, 2012; Peng

and Li, 2011 ). However, the independence assumption within each class still seems to be restrictive in practice. Even simple

dependence structure in the data requires us to use a large number of classes and parameters to capture, in particular when

number of attributes of interest is large. In this case, an natural solution is to reformulate the latent class models in a similar

way as Tucker decomposition 

p 
(
x i | θ

)
= 

h 1 ∑ 

k 1 =1 

· · ·
h m ∑ 

k m =1 

πk 1 ... k m p k 1 ... k m ( x i | θ) , (7)

where h d is the number of principle patterns in mode d (thus the total number of pattern combinations is h 1 × ��� ×
h m 

), and πk 1 ... k m 
denotes the probability that a trip is characterized by combination (k 1 , . . . , k m 

) . A common approach in

modeling the joint probability is to assume local independence 

p k 1 ... k m 
(
x i | θ

)
= 

m ∏ 

d=1 

p ( 
d ) 

k d 

(
x id | θ( d ) 

k d 

)
= 

m ∏ 

d=1 

θ ( d ) 
x id k d 

, (8)

where θ
(d) 
k d 

= ( θ (d) 
1 k d 

, . . . , θ (d) 
w d k d 

) � is a w d × 1 probability vector with 

∑ w d 
c d =1 

θ (d) 
c d k d 

= 1 . Similar to u 

( d ) in Eq. (3) , θ( d ) can be

considered a probabilistic factor matrix on mode d . Thus, each element in the probability tensor can be calculated as the

sum across all pattern combinations 

p 
(
x i 1 = c 1 , . . . , x im 

= c m 

| θ) = 

h 1 ∑ 

k 1 =1 

· · ·
h m ∑ 

k m =1 

πk 1 ... k m θ
( 1 ) 
c 1 k 1 

× · · · × θ ( m ) 
c m k m 

. (9)

This model is essentially equivalent to a non-negative Tucker (NNT) decomposition as in Eq. (3) ( Peng and Li, 2011 ), in

which all vectors u 

( d ) 
k 

∈ R 

w d in factor matrices are replaced with a probability vector θ( d ) 
k 

and the core tensor g k 1 ... k m is

replaced with πk 1 ... k m 
. Eq. (7) can be also regarded as a multi-way extension to the standard two-dimensional PLSA in topic

model ( Hofmann, 1999 ). For parameters interpretation, θ( d ) characterize the principle patterns on each mode d and the core

tensor π captures the interactions across different modes. One advantage of this model is that all combinations of model

vectors are used to form the tensor and it may require less parameters than the latent class model (NNCP decomposition in

other words). Therefore, instead of capturing local dependence using large number of classes, it is able to identify universal

patterns along each mode and use a core tensor to depict their interactions. The Tucker alike representation in Eq. (7) is our

focus in this paper. 

3.4. Model inference 

The most common approach to estimate the PLSA model is to introduce latent variables on the joint membership and

then apply the EM algorithm ( Dempster et al., 1977 ), which is a powerful tool for mixture model and missing data prob-

lems, to infer its parameters. For this probabilistic factorization problem, we first introduce latent variables z on membership

across all combinations, with z i ∈ { ( k 1 , . . . , k m 

) | k 1 = 1 . . . h 1 , · · · , k m 

= 1 . . . h m 

} representing a combination that an observa-

tions x i comes from. The joint distribution of x and z in the complete model can be formulated as 

p 
(
x , z | θ) = 

n ∏ 

i =1 

h 1 ∏ 

k 1 =1 

· · ·
h m ∏ 

k m =1 

[ 

πk 1 ... k m 

m ∏ 

d=1 

θ ( d ) 
x id k d 

] I ( z i = ( k 1 , ... ,k m ) ) 

, (10)

and the complete data log likelihood can be written as 

log L 

(
θ| x , z 

)
= 

n ∑ 

i =1 

h 1 ∑ 

k 1 =1 

· · ·
h m ∑ 

k m =1 

[ 

I ( z i = ( k 1 , . . . , k m 

) ) ×
[ 

log πk 1 ... k m + 

m ∑ 

d=1 

log θ (d) 
x id k d 

] ] 

. (11)

By introducing latent variable z , we are able to push the log function inside the sum and thus all parameters can be

efficiently estimated using the EM algorithm. Applying the EM algorithm begins with random initial values of θ and π.

Then, the EM algorithm applies the following two steps iteratively until certain convergence criterion is met: (1) compute
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the expectation of complete data log likelihood, which is often denoted as an auxiliary function Q( θ| θ[ t−1 ] 
) , and then (2)

updates new parameter by maximizing 

Q( θ| θ[ t−1 ] 
) = E 

z| x , θ[ t−1 ] 

[
log L 

(
θ| x , z 

)]
= 

n ∑ 

i =1 

h 1 ∑ 

k 1 =1 

· · ·
h m ∑ 

k m =1 

γ k 1 ... k m 
i 

[ 

log πk 1 ... k m + 

m ∑ 

d=1 

log θ ( d ) 
x id k d 

] 

, 
(12) 

where γ
k 1 ... k m 

i 
= E 

z| x , θ[ t−1 ] [ I ( z i = (k 1 , . . . , k m 

) ) ] � p(z i = (k 1 , . . . , k m 

) | x i , θ[ t−1] 
) (also called the responsibility that class

(k 1 , . . . , k m 

) takes for trip record x i ). The EM procedure can be summarized as follows: 

E-step Compute Q( θ| θ[ t−1 ] ;π[ t−1 ] ) in Eq. (12) . The responsibilities γ k 
i 

can be calculated by applying the Bayes’ theorem

γ k 1 ... k m 
i 

= 

π [ t−1 ] 

k 1 ... k m 
p k 1 ... k m ( x i | θ[ t−1 ] 

) ∑ h 1 
k 1 =1 

· · · ∑ h m 
k m =1 

π [ t−1 ] 

k 1 ... k m 
p k 1 ... k m ( x i | θ[ t−1 ] 

) 
. (13) 

M-step Update parameters θk for each class k with 

θ
[ t] = arg max 

θ
Q( θ| θ[ t−1 ] ;π[ t−1 ] ) . (14) 

As can be seen, Eq. (12) only involves sum of logs for each multinomial distribution and thus the maximization prob-

lem in Eq. (14) can be decomposed to into k × d subproblems. The optimal solution for each subproblem can be derived

analytically. For each element in θ ( ∀ c d = 1 , . . . , w d ; ∀ d = 1 , . . . , m ; ∀ k = 1 , . . . , h d ), the new value is updated given by 

θ (d)[ t] 

c d k 
= 

∑ n 
i =1 

∑ h 1 
k 1 =1 

· · · ∑ h m 
k m =1 

[ I (x id = c d , k d = k ) × γ k 1 ... k m 
i 

] ∑ n 
i =1 

∑ h 1 
k 1 =1 

· · · ∑ h m 
k m =1 

[ I (k d = k ) × γ k 1 ... k m 
i 

] 
. (15) 

For each class ∀ k 1 = 1 , . . . , h 1 ; ���; ∀ k m 

= 1 , . . . , h m 

, update new weight parameter πk 1 ... k m 
with 

π [ t ] 

k 1 ... k m 
= 

1 

n 

n ∑ 

i =1 

γ k 1 ... k m 
i 

. (16) 

A well-known drawback of the EM algorithm is that it may only find a local optimal solution rather than a global

one, depending on the initial values of parameters in the first iteration. In order to avoid local optimal and be more

certain in getting a global solution, the estimation process should be repeated for multiple times with different initial

parameters. 

4. Case study 

In this section we apply the framework and estimation procedure on a large-scale public transport smart card trans-

actions dataset collected in Singapore, which include both bus and metro modes. Section 4.1 briefly introduces the smart

card data used in this study and the way we transform it into multivariate categorical data x . The results of applying the

factorization model are reported in Section 4.2 . 

4.1. Smart card data 

We use smart card transactions as a proxy to collective mobility. The public transport systems in Singapore, including

both bus and metro, are equipped with smart card based automated fare collection (AFC) systems. Since public transport

in Singapore adopts a distance-based fare scheme, passengers not only tap-in but also have to tap-out for each journey. As

a result, a full transaction contains spatial information (stop/station ID) and temporal information (tapping timestamp) for

both boarding and alighting activities ( Sun et al., 2014 ). The smart card data used in this study was recorded from April 11

to 14 (Monday–Thursday) in 2011. 

We represent a single transit trip by a multivariate tuple (card ID, passenger type, time, boarding stop/station, alighting

stop/station). Considering that a single transit journey may involve multiple stages with transfers, we first combine those

transactions with intervals (from tapping-off to the next tapping-in) being less than 30 min. By doing so we are able to

infer the real origin-destination information in a journey level instead of using transactions from all stages. In order to

fit trip information with the tensor representation, we apply the transformation listed in Table 1 to map different vari-

ables into categorical values. In the spatial dimension, boarding/alighting stops/stations are aggregated at the planning zone

level. 

By applying this procedure, we transform the raw transit trip data into x , with each observation containing four vari-

ables. The total number of journey observations n is about 14 million. We aggregate those trips belonging to the same
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Table 1 

Transformation of smart card transactions. 

Attribute No. of categories Description 

Time of day 20 (1) 4:30-5:30, (2) 5:30-6:30,…, (20) 23:30-0:30 

Passenger type 3 (1) Adults, (2) Senior citizens, (3) Children/students 

Origin zone 51 One to one mapping to zone ID 

Desination zone 51 One to one mapping to zone ID 

Table 2 

Core tensor π summarized in origin zone mode and destination zone mode. 

T1 T2 T3 T4 

Sum 0.3647 0.2513 0.2175 0.1665 1 .0 0 0 

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 

Sum 0.3157 0.0339 0.0151 0.2190 0.0294 0.0029 0.1060 0.1004 0.0111 0.0631 0.0169 0.0866 1 .0 0 0 

O1 0.1706 0.0148 0.0043 0.0034 0.0 0 0 0 0.0 0 0 0 0.0474 0.0259 0.0 0 09 0.0 0 06 0.0013 0.0 0 06 0.2699 

O2 0.0306 0.0058 0.0030 0.0668 0.0106 0.0 0 07 0.0157 0.0269 0.0026 0.0103 0.0040 0.0249 0.2020 

O3 0.0350 0.0056 0.0026 0.0485 0.0065 0.0 0 08 0.0151 0.0198 0.0027 0.0124 0.0034 0.0194 0.1718 

O4 0.0455 0.0039 0.0016 0.0357 0.0055 0.0 0 02 0.0105 0.0130 0.0015 0.0147 0.0051 0.0141 0.1514 

O5 0.0215 0.0021 0.0018 0.0356 0.0032 0.0 0 09 0.0103 0.0074 0.0012 0.0136 0.0016 0.0122 0.1115 

O6 0.0125 0.0016 0.0017 0.0290 0.0036 0.0 0 03 0.0070 0.0074 0.0021 0.0115 0.0013 0.0154 0.0934 

D1 0.0409 0.0016 0.0 0 05 0.1289 0.0145 0.0 0 01 0.0562 0.0261 0.0011 0.0035 0.0018 0.0 0 06 0.2758 

D2 0.0817 0.0122 0.0043 0.0144 0.0039 0.0 0 05 0.0119 0.0259 0.0024 0.0087 0.0032 0.0252 0.1942 

D3 0.0644 0.0081 0.0035 0.0227 0.0038 0.0012 0.0127 0.0201 0.0027 0.0119 0.0038 0.0193 0.1740 

D4 0.0494 0.0056 0.0019 0.0344 0.0041 0.0 0 0 0 0.0085 0.0127 0.0015 0.0211 0.0062 0.0147 0.1601 

D5 0.04 4 4 0.0031 0.0026 0.0130 0.0018 0.0 0 03 0.0093 0.0077 0.0013 0.0108 0.0013 0.0119 0.1077 

D6 0.0350 0.0033 0.0024 0.0055 0.0013 0.0 0 08 0.0073 0.0080 0.0021 0.0071 0.0 0 05 0.0148 0.0882 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

combination [time of day, passenger type, origin zone, destination zone] and count the number of occurrences of each com-

bination correspondingly. In doing so, we convert the raw data into a combination-frequency table and use this table in

the estimation procedure. In total, we observe 105,688 unique combinations (the total number of possible combinations is

20 × 3 × 51 × 51 = 156 , 060 ), with a minimum count of 1 and a maximum count of 11,845. 

4.2. Factorization of collective transit journeys 

We apply the EM procedure introduced in previous section on the trip record x . The size of the core tensor determines

the capacity and generalization of the model. The values in the core tensor shows the degrees of interactions between dif-

ferent modes. A larger core tensor may better fit the data, but in the meanwhile it involves more parameters that may

increase the risk of overfilling. On the other hand, a small core tensor may be not capable of fully capturing complex inter-

dependence in the data. In a probabilistic framework we can compute the likelihood of observing data x , and thus one may

conduct model selection using Akaike information criterion (AIC) or Bayesian information criterion (BIC) in determining the

size of the core tensor. In this study, we use a small 4 (time of day, T) × 3 (passenger, P) × 6 (origin zone, O) × 6 (desti-

nation zone, D) core tensor π for efficient estimation. In practice, a smaller core tensor could facilitate the interpretation of

results. We chose this size of core tensor based on subjective analysis and similar analysis such as in Wang et al. (2014) . To

test the representativeness of our results, we also apply the procedure on different sizes of core tensors ([4 × 3 × 5 × 5],

[4 × 3 × 8 × 8], [5 × 3 × 5 × 5], [5 × 3 × 6 × 6] and [5 × 3 × 8 × 8]). We find that the results are basically consistent

across different sizes of core tensors. In general, we find that larger core tensors do provide better fit given the large amount

of data. However, a larger core also makes the results more difficult to interpret. In the following of this paper, we report

the main result based on [4 × 3 × 6 × 6] and use [5 × 3 × 8 × 8] as a comparison. The convergence criteria is set to be

relative change being less than 10 −5 and maximum iteration is set to 10,0 0 0. In order to find global optimal, we ran the

EM procedure 20 times with different random initial values. However, we find that the estimation always converges to the

same solution. Table 2 provides the values summed over the origin zone mode and the destination zone mode in the core

tensor, respectively. A cell πk 1 ... k 4 
characterizes how much the four components in a particular combination interact with

each other and shows the probability that a trip is characterized by temporal pattern T( k 1 ), passenger pattern C( k 2 ), origin

pattern O( k 3 ) and destination pattern D( k 4 ). 

The decomposition allows us to reason about each pattern given its distribution profile. Fig. 1 (a) depicts the profiles of

the four temporal patterns (four columns in the time factor matrix). We obtain a similar temporal composition profile as

in Peng et al. (2012) and Wang et al. (2014) . The largest temporal component—T1, with peaks around 6 p.m—covers about

36.5% of all journeys. The second largest component T2 concentrates at the morning peak hours from 7 a.m. to 9 a.m. T3

is mainly distributed in between T1 and T2. The smallest temporal component—T4, looks like a bimodal distribution with a

morning peak at 6–7 a.m., which is before the peak of T2, and an afternoon/evening peak that is flatter than the peak in the
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Fig. 1. Principle patterns in time and passenger modes. (a) temporal distribution for each pattern (column) in the time factor matrix, and (b) passenger 

composition for each pattern (column) in passenger factor matrix. 

Fig. 2. Principle patterns in time and passenger modes with core tensor size being 5 × 3 × 8 × 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

morning. The factorization also allows us to measure the corresponding interactions along other modes. Fig. 1 (b) shows the

composition of each passenger pattern C1, C2 and C3, which cover 70.4%, 18.0% and 11.6% of total journeys, respectively. We

see in the figure that senior citizens (SC) and children/students (CH/ST) are clearly distinguished, indicating that different

types of passengers have their own unique travel patterns. Compared with the results from a [5 × 3 × 8 × 8] core, we find

that the passenger type mode patterns almost remain the same, with children and senior citizens being clearly identified,

with C1, C2, and C3 covering 60.8%, 27.9% and 11.4%, respectively. In terms of temporal distribution, we can see that mode

T1 almost remains identical and a new pattern T5 is generated by mainly taking the mass on 6–7 a.m. from T2 and T4 (see

Fig. 2 ). The proportion of T1–T5 is 36.2%, 21.3%, 21.5%, 11.7% and 9.3%. 

To further quantify the latent interactions, we can calculate the conditional probability across different modes in the

core tensor using the Bayes’ theorem. For example, the conditional distribution of temporal patterns (T) given passenger

composition pattern (C) is 

P ( T | C ) = 

⎡ 

⎢ ⎣ 

T 1 T 2 T 3 T 4 

C1 0 . 4486 0 . 3112 0 . 1506 0 . 0896 

C2 0 . 1879 0 . 1626 0 . 5561 0 . 0934 

C3 0 . 1303 0 . 0250 0 . 0959 0 . 7487 

⎤ 

⎥ ⎦ 

. (17) 

As can be seen, passenger pattern C1 (adults) is mainly associated with temporal profiles T1 and T2. Considering the tem-

poral profiles, T1 and T2 can be principally interpreted as work-home and home-work trips. C2 is mainly (55.6%) covered by

temporal pattern T3, which may denote work-work trips and some secondary activities such as going for lunch, leisure and

shopping. Passenger pattern C3 is dominated by temporal distribution T4 (74.9%), corresponding to the bimodal nature of

home-school/school-home journeys. On the other hand, from Table 2 we can also see that journeys of children and students

(C3) cover more than 50% (0.086 6/0.16 65) of those trips belonging to T4. Similarly, one can further study the interaction
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Fig. 3. Rescaled probability distribution of θ
′ ( O ) 

and θ
′ ( D ) 

of spatial modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by looking at P ( C | T ). Essentially, by analyzing the factorization results we are able to interpret the latent interactions in the

core tensor and each factor matrix. 

Fig. 3 displays the column factor of the spatial factor matrix θ( O ) and θ( D ) . To better visualize the spatial configuration, the

values in each column are rescaled to 0–1 by letting θ ′ ( d ) 
c d k 

= θ ( d ) 
c d k 

/ max ( θ( d ) 
k 

) . Interestingly, we find that the spatial compo-

nents across the origin zone mode and the destination zone mode are almost identical with minor differences. This indicates

that the public transit journeys demonstrate strong bi-directional homogeneity due to those regular home-based trips, such

as home-work/work-home and home-school/school-home. The results also suggest that we may further reduce the number

of parameters in the factorization model by letting θ( O ) = θ( D ) 
. From now on we discuss the spatial patterns in origin and

destination mode jointly. 

To compare the inferred spatial patterns with the regions in Singapore’s master plan, we show in Fig. 4 the urban regional

systems defined by Urban Redevelopment Authority of Singapore. As can be seen, the identified spatial patterns match

the master very well except that divided the western region into two patterns. The largest component (O1/D1) is mainly

distributed to the central business district (CBD) of Singapore. The rest components are locally distributed in certain regions

across the whole island. Even though the estimation process does not take any spatial location information into account,

we still observe that each component forms a strong spatial cluster due to the homogeneity of collective travel patterns

inside it. 

Table 3 shows the joint distribution of origin mode and destination mode in the core tensor. The distribution is obtained

by summing up the values in the core tensor along the time and passenger modes. As can be seen, the distribution shows
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Fig. 4. Planning region of Singapore Master Plan 2014 (source: https://www.ura.gov.sg/maps/ ). 

Table 3 

Core tensor summed over origin × destination. 

Destination 

D1 D2 D3 D4 D5 D6 Sum 

Origin O1 0.1167 0.0584 0.0370 0.0179 0.0224 0.0175 0.2699 

O2 0.0629 0.1252 0.0061 0.0021 0.0045 0.0012 0.2020 

O3 0.0370 0.0038 0.1255 0.0029 0.0019 0.0 0 07 0.1718 

O4 0.0190 0.0 0 06 0.0020 0.1154 0.0034 0.0108 0.1514 

O5 0.0225 0.0053 0.0025 0.0061 0.0705 0.0046 0.1115 

O6 0.0178 0.0010 0.0 0 08 0.0155 0.0050 0.0534 0.0934 

Sum 0.2758 0.1942 0.1740 0.1601 0.1077 0.0882 1 .0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

very high values on the diagonal of the matrix, indicating that the overall spatial interaction is dominated by inner-pattern

interactions. The interactions between pattern 2 to pattern 6 (O2-O6/D2-D6) is found to be very weak, while the CBD pattern

(O1/D1) demonstrates strong interactions with all the rest patterns. Considering that CBD often plays the role of primary

work location, it generates and attracts large volumes of traffic across the whole city, showing strong interactions with all

the other regions. On the contrary, the local components (2–6) seem to be well self-sustained, with little communication

between each other. 

To further explore the patterns of spatial interactions, we show the disaggregated distribution along each temporal com-

ponent in Fig. 5 . As can be seen, T3 and T4 are almost locally distributed without much interactions with other spatial

patterns. The essential difference is the value of cell (O1,D1) in T3 is substantially larger than that in T4, indicating that

T3 has strong interactions within spatial pattern 1 (O1/D1), while T4 is barely revealed in CBD. This can be explained by

integrating information from the temporal and passenger type dimension. As mentioned before, T4 is mainly composed of

trips from children and students and it is mainly covered by inner region home-school/school-home journeys that are not

related to CBD. In comparing the spatial interaction of T1 and T2, we find that they are almost opposite to each other due to

the balanced work-home and home-work journeys. However, despite the difference in strength, we observe a considerable

amount of trips within the CBD pattern in evening (T1), while such trips rarely appear in the morning (T2). In fact, the CBD

of Singapore contains only a few residential buildings so it does not generate large flows in the morning. The considerable

inner CBD trips in T1 suggest that those people working in CBD tend to have some secondary activities—such as leisure

and shopping—around their work location before going home. This also explains why the interaction strength on the diag-

onal from pattern 2 to 6 in T1 is stronger than T2 and why temporal component T1 covers a larger proportion than T2.

Similarly, we can also analyze the interactions along the passenger mode. In principle, the numerical example shows that

the core tensor π characterizes the interactions between different modes in a very efficient and informative manner. The

factorization allows us to explain the complex dependence and higher-order interactions in the joint distribution p ( x ) by

using relatively few latent factors. 

Based on the factor matrices on the two spatial modes, we can further explore the community structure of a city ( Sun

et al., 2015; Wang et al., 2014 ). In fact, by working on the factor matrices, we can compute the conditional probabil-

https://www.ura.gov.sg/maps/
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Fig. 5. Spatial interaction (origin × destination) for different temporal patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ity that a zone belongs to a particular pattern (corresponding to community), and thus we can infer not only the most

probable structure, but also the degree of overlapping ( Yang and Leskovec, 2013 ). In defining communities, we denote

the community that zone c d belongs to as the pattern index k ( k = 1 , . . . , h d ) with highest θ ( d ) 
c d k 

. In other words, we let

community (c d ) = arg max 
k 

θ ( d ) 
c d k 

. For the case study, both origin zones and destination zones are categorized into six com-

munities. Panel (a,c) and (b,d) in Fig. 6 show the community structure of origin zone mode and destination zone mode,

respectively. The opacity in panel (a) and (b) indicates the absolute value of θ ( d ) 
c d ,k 

of the corresponding community in the

origin/destination projection matrices, respectively. While in panel (c) and (d), the opacity denotes the conditional proba-

bility that an zone c d belongs to community k . As can be seen, the community structures for origin zones and destination

zones are almost identical. The uncertainty of membership mainly comes from two factors. First, zones with little traffic

might be assigned to different communities, since the variation in traffic will affect the conditional probability significantly.

On the other hand, the uncertainty results from zones have strong interactions with different communities. In this case we

may consider them as overlapping structures of different communities. 

We conduct the same exercise on the [5 × 3 × 8 × 8] core tensor and show the results of spatial-temporal interactions

and community structure in Fig. 7 and 8 . Comparing Fig. 5 with Fig. 7 , we find that the spatial interaction with 8 modes

is characterized by a similar structure as the one with 6 modes. Similar interpretations for T1-T4 from 6 modes could be

applied on the results from 8 modes. The last pattern T5, although only covers a tiny proportion of all trips, does exhibit

a complex interaction across different regions. Given its temporal pattern shown in Fig. 2 , this could be explained as those

long-distance commuters, who departed very early in the morning and traveled across the whole city to reach their work

place in time. Similar to Fig. 6 , we show the community structure with 8 spatial modes in Fig. 8 . Essentially, we find that

the community colored in yellow in Fig. 6 is divided into two (yellow and brown) in Fig. 8 . And the blue community in

Fig. 6 is divided into blue and black in Fig. 8 . 

5. Concluding remarks 

In this paper, we apply a probabilistic factorization framework on multi-way transit trip records to reveal the spatial-

temporal patterns of urban mobility. To this end, we consider transit journey a multivariate random variable and assume

that each journey observation is a sample generated from a universal joint distribution. The joint distribution describes the

complicated dependence and higher-order interactions among different dimensions. In order to characterize those depen-

dence and interactions in such a high-dimensional setting, we use a probabilistic factorization model—which is consistent

with probabilistic latent semantic analysis and non-negative Tucker decomposition—to reconstruct the joint distribution us-

ing a low-rank approximation and simple latent structures. The model can be efficiently estimated using the EM algorithm

and the results can be better interpreted with the tensor representation. 

The model focuses on providing a generalized data-driven framework to better utilize the increasing amount of

individual-based spatial-temporal data. We apply the framework on 14 million transit journeys extracted from smart card

transactions in Singapore. The original trip data is summarized with a four-way journey representation: time of day, passen-

ger type, origin zone and destination zone. The factorization clearly identifies and classifies principle patterns and the result
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Fig. 6. Spatial structure of communities of origin mode (a,c) and destination mode (b,d). The six different colors indicate difference communities in all 

these panels. In [a,b], the opacity indicates the exact value of θ ( d ) 
c d ,k 

in factor matrices. In [c,d], the opacity represents the conditional probability that a zone 

belongs to a community. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is in agreement with previous studies on temporal patterns of urban mobility. Despite capturing patterns using factor ma-

trices, the joint interactions are also characterized in the core tensor, which can be considered weight parameters in latent

class models in the classification. As a result, the model also provides us a new clustering approach that takes information

from different dimensions into account, helping us better reveal the underlying spatial-temporal structure of a city from

human mobility data. In the numerical experiment, we demonstrate the patterns of transit journeys in terms of temporal

distribution and passenger composition. By examining these patterns, we can classify groups of people with unique tempo-

ral activity distribution. Although spatial information is only used implicitly, we still observe strong spatial patterns in both

the spatial factor matrices and the core tensor. By inspecting the results, it is possible to characterize all zones into separate

communities, in which inner community interactions are stronger than those of inter community. 

The questions about the dynamics and complexity of cities are essential to urban/transportation planning. Our paper en-

riches the information in mobility data by reasoning about critical mobility pattern in a multi-dimensional setting, providing

a deep understanding of spatial-temporal urban dynamics through collective transit mobility. The probabilistic factorization

is a general framework and it demonstrates great flexibility for classification from complex data sets. Several directions

are worth noting for future research. For example, additional information such as trip purposes, trip chain and transport

modes could be inferred and integrated to the model by adding new dimensions to the data ( Han and Sohn, 2016; Nassir

et al., 2015 ). Modeling individual journeys in a probabilistic setting also allows us to adopt a Bayesian framework to further

support the estimation. In this case, we can use Dirichelet distribution as priors to the multinomial distribution in both

the factor matrices and the core tensor. The model can also be adapted for different purposes, such as estimating origin-

destination matrices. For example, focusing only on the destination dimension we could use it as a data-driven destination

choice model that is sensitive to time and passenger types. This may help us to build a new transportation demand model-

ing framework and other agent-based models. On the other hand, the concept of tensor decomposition provides us a natural

solution to deal with missing data under some assumptions and to reconstruct the full joint distribution from a small set

of available data. With the increasing amount of available data nowadays, such approaches become advantageous for us to

understand and interpret the latent interactions and complex dependence in the large datasets registering individual behav-

iors, offering new insights to urban and transportation planning by enhancing our understanding about collective human

mobility. 
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Fig. 7. Spatial interaction (origin × destination) for different temporal patterns. 

Fig. 8. Same as Fig. 6 , but for 5 × 3 × 8 × 8 core tensor. 
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