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This paper proposes an integrated Bayesian statistical inference framework to characterize
passenger flow assignment model in a complex metro network. In doing so, we combine
network cost attribute estimation and passenger route choice modeling using Bayesian
inference. We build the posterior density by taking the likelihood of observing passenger
travel times provided by smart card data and our prior knowledge about the studied metro
network. Given the high-dimensional nature of parameters in this framework, we apply
the variable-at-a-time Metropolis sampling algorithm to estimate the mean and Bayesian
confidence interval for each parameter in turn. As a numerical example, this integrated
approach is applied on the metro network in Singapore. Our result shows that link travel
time exhibits a considerable coefficient of variation about 0.17, suggesting that travel time
reliability is of high importance to metro operation. The estimation of route choice param-
eters conforms with previous survey-based studies, showing that the disutility of transfer
time is about twice of that of in-vehicle travel time in Singapore metro system.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With the increasing demand and range of urban mobility, metro systems are playing more and more important roles in
urban transportation, particularly in high-density mega-cities. Taking Singapore’s Mass Rapid Transit (MRT) system as an
example, around two million metro trips were made daily in the year 2012. Compared with other transport modes, metro
systems have dedicated and exclusive rail-based infrastructures, making it possible to provide superior service with higher
speeds and larger capacity. Due to their superiority, metro systems not only attract but also suffer from high passenger
demand – especially during rush hours when passenger demand exceeds its designed capacity for not only trains, but also
platforms – experiencing over-crowdedness, disturbances and disruptions time and again. These factors bring about nega-
tive effects on passenger’s traveling experience and therefore should be minimized. From operators’ point of view, under-
standing passenger demand and flow assignment patterns in a complex metro network becomes crucial to maintaining
service reliability and developing efficient failure response strategies.
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To characterize a passenger flow assignment model for metro network, two factors are of the most importance: origin–
destination (O–D) demand matrix and route choice behavior. Because of the widely adopted tap-in-tap-out fare collection
system, the station-to-station O–D matrix in a metro network is known; however the route choice decisions are usually
not directly observable, therefore a widely used approach is to first develop a route choice model – characterized by some
critical cost attributes influencing passenger perception, such as in-vehicle time, number of transfers and fare paid – and
then employ observed preference data to calibrate model parameters. Despite the mathematical modeling, in principle there
are two crucial issues to be solved in this approach before applying it on metro networks. The first is to accurately measure
each attribute in the model, such as different stages of travel time and transit fares mentioned above. These values are used
as input and assumed to be known in advance. In practice, experimenters need to determine such network properties by
using train operation data and field surveys. However, accurate evaluation of route attributes, such as in-vehicle time, wait-
ing time and transfer time, could be challenging considering possible congestion or interruption scenarios. The second issue
is to obtain enough field observations, which register individual route choice preferences to support parameter estimation.
However, in practice one may encounter many difficulties. On one hand, in the absence of detailed train operation logs
recording train departure/arrival time and trajectories, it is difficult to measure exact network attributes, such as in-vehicle
time, waiting time and transfer time. On the other hand, as most metro networks are designed as closed systems where pas-
sengers only leave traces at boarding/alighting stations for the purpose of fare collection, operators have limited knowledge
on passenger route choice and trajectory within the system. In other words, we know little about which train or which trans-
fer station an individual passenger has taken during his/her trip in the case where multiple alternative routes exist. In order
to obtain passenger route choice preference data, a conventional approach is to conduct field surveys in train stations, asking
people the exact route they will take to reach their destinations. However, some shortcomings of these methods have been
identified, such as being subject to bias and errors and being both time-consuming and labor-intensive in conducting surveys
and processing the data. In addition, since most surveys are conducted with focus on particular location and time, the results
are often limited in scale and diversity. As a result, developing alternative methods to reveal individual route choice prefer-
ence in large-scale networks remains challenging.

The emergence and wide deployment of automated fare collection (AFC) systems open a new data-driven approach for
metro network analysis. Taking advantage of smart card-based fare collection systems, in which individual passenger’s tap-
ping-in/out transactions are recorded, researchers are now able to better understand metro operation with large quantities
of real-world observations (Pelletier et al., 2011). Such data set also provides us with a good opportunity to study passenger
behavior in a data-driven approach. In doing so, researchers have tried to combine passenger travel time information with
train operation logs (Kusakabe et al., 2010; Sun and Xu, 2012; Zhou and Xu, 2012). However, without further investigating
travel time variability, these approaches essentially assume that train services are always punctual to timetables and hence
network cost attributes are assumed to be deterministic, even though there is clear evidence showing that train services can
be delayed/disrupted by excessive passenger demand. On the other hand, owing to the uncertainty in travel time, the diffi-
culties in revealing individual trajectory from tap-in/tap-out information still remain, preventing us from collecting accurate
preference data. In view of these unsolved issues, this paper presents the development and empirical verification of a new
integrated metro assignment framework using Bayesian inference approach. Taking advantage of large quantities of real-
world observations provided by smart card data, the suggested model simultaneously estimate network attributes and pas-
senger route choice preference. Consequently, the proposed framework utilizes only travel time observations along with sta-
tic network data to construct the passenger flow assignment model in a closed metro network. With low social-economic
cost and implementation convenience, such approach is appealing for metro operations and maintenance.

Bayesian inference method is a well established statistical model which has been applied to various transportation appli-
cations, including O–D estimation, route choice modeling and flow assignment inference (Hazelton, 2008, 2010; Wei and
Asakura, 2013). It enables us to find a posterior distribution which integrates all our prior knowledge with the available
observations. Although in this sense it is a powerful tool for our inference problem, in practice it is difficult to implement
such models owing to the difficulty in computing the Bayesian posterior analytically. However, thanks to the rapid increase
of computational power, nowadays we can characterize properties of the Bayesian posterior using computational
approaches, of which the most notable one is Markov Chain Monte Carlo (MCMC) methods (Robert and Casella, 2004;
Robert, 2014). The proposed framework in this paper is also based on solution algorithms provided by MCMC methods. In
general, the MCMC approach is used for complex models where maximum likelihood is difficult to calculate using conven-
tional optimization methods (e.g., Newton–Raphson algorithm and Expectation–Maximization (EM) algorithm) or prior
knowledge is important and should be integrated.

The contribution of this paper is threefold. First, we construct an integrated network characterization and flow assign-
ment framework through a data-driven approach, allowing us to better understand passenger route choice behavior from
large quantities of smart card observations. Second, by taking travel time variability caused by possible interruption during
metro operation into consideration, our model can better characterize network travel time and its uncertainty given any O–D
pairs, providing better travel information to metro users. Finally, as will be shown in the following, the Bayesian formulation
has the capacity to estimate network cost attributes and characterize passenger route choice model in a simultaneous man-
ner, showing great potential in practice, in particular in cities with large/complex metro networks such as Beijing, London,
New York, Seoul and Tokyo.

This remainder of this paper is organized as follows: in Section 2, we review previous studies on several related topics,
including travel time reliability, passenger route choice behavior, the use of smart card data in understanding metro
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operation and flow assignment, and in particular the application of Bayesian inference in transport network modeling; in
Section 3, we propose the modeling framework, which contains several components including reconstructing network, iden-
tifying choice set and building the Bayesian inference model. In Section 4, we present the variable-at-a-time solution algo-
rithm to characterize Bayesian posterior distribution. As an illustration, we apply the proposed framework on the simplified
Singapore MRT network as a case study in Section 5. Finally, we conclude our study, summarize our main findings and dis-
cuss future research directions in Section 6.
2. Literature review

Travel time reliability on urban road networks has been documented extensively in the literature, for both buses and pri-
vate vehicles (Li et al., 2012; Strathman and Hopper, 1993; van Nes and van Oort, 2009). However, as mentioned, metro sys-
tems have long been considered as punctual to timetables (except during service interruptions/disruptions) and metro travel
time reliability has attracted little attention in the literature. This is likely due to the lack of empirical observations regarding
metro travel time reliability, which has now become available with the emergence of smart card data.

The large quantities of smart card transactions offer us a great opportunity to investigate passenger transit behavior and
demand patterns (Bagchi and White, 2005). For example, Barry et al. (2002) first used smart card data to estimate metro O–D
demand. By analyzing transit smart card data in Seoul, Park et al. (2008) suggested that smart card holders exhibit no dif-
ference from other users in terms of travel behavior, and travel patterns can be analyses in an aggregated manner. Using the
same data set, Jang (2010) presented an empirical study on identifying transfer patterns of inter-modal transportation. Apart
from understanding travel behavior, smart card data have been used to improve public transit services at strategic, tactical
and operational levels as well. A comprehensive review of using smart card data at different levels of management can be
found in Pelletier et al. (2011). Using passenger demand extracted from smart card data in Singapore, Jin et al. (2014) studied
a practical problem about integrating localized bus service with metro network in order to enhance the resilience to service
disruptions of metro systems, offering new design principles of multi-modal transit networks. Using the same data set, Sun
et al. (2014) proposed three optimization models to design demand-driven timetables for a single-track metro service. The
results show that demand-sensitive timetables have great potential in reducing passenger waiting time and crowdedness on
trains.

Bus smart card systems record not only boarding/alighting stop/time, but also the ID of the vehicle. Thus, it may play the
same role as data collected from automated vehicle location (AVL) and automated passenger counting (APC) systems (Lee
et al., 2012). However, for metro systems, in which smart card readers are not deployed on trains but at stations, we cannot
identify the particular train that an individual passenger takes from the transactions directly. Thus, it remains a challenge to
understand metro trips at a microscopic level, in particular when travel time variability is taken into account. Besides, with-
out an in-depth understanding of passenger route choice behavior, the flow assignment problem still need to be studied
carefully.

In terms of calibrating flow assignment models, the field has long been relying on collecting preference data (e.g. stated
preference and revealed preference) from field surveys and analyses. Thanks to the emergence of smart card data, the chal-
lenge now may shift to reveal passenger route choice using historical transactions rather than collecting route choice data
with physical surveys. In doing so, Kusakabe et al. (2010) developed a methodology to estimate the exact train which an indi-
vidual passenger occupies during his/her journey. This method could be used to accurately estimate train occupancy, which
is an important factor influencing passenger’s perception on service quality. Zhou and Xu (2012) proposed a maximum like-
lihood estimation method of individual passenger route choice given his/her entry and exit times. Based on the individual
estimation, a flow assignment model was proposed to map the macroscopic passenger flow in reality for comparison. Given
that the model relies on service timetable, it cannot characterize special events such as passengers being left-behind by a full
train. Using the same data set in Beijing, Sun and Xu (2012) introduced the stochastic cost nature of different segments of a
metro trip – walking-in, waiting, transfer and walking-out. The method first characterizes the distribution of travel time on
each alternative and then uses the mean and variance (moments) to estimate the weight parameter of each component. This
approach also requires accurate train operation timetables/logs as input, which may not available for other cases. However,
these studies essentially ignore the stochastic nature of train travel time between successive stations, assuming that trains
are always punctual to the scheduled timetable and requiring scheduled timetable data as input. By analyzing real-world
passenger travel in Singapore, we found clearly that there is an increasing trend of standard deviation of travel time against
mean travel time, suggesting that variability increases with travel time. In order to infer the exact train that one passenger
took in the absence of operation logs, Sun et al. (2012) proposed a linear regression model to estimate train operation prop-
erties on a single-track and used the results to compute individual trajectory during a metro trip. By aggregating trajectories
for all passengers by time, this method can help to identify train/service trajectory and estimate spatial–temporal occupancy
of trains. However, the approach is only applied on a single-track, while at a network level the transfers and synchronization
between different services need to be further investigated. In a recent paper, Zhu et al. (2014) presented an framework to
calibrate passenger flow assignment model in metro networks based on genetic algorithm. The core of this framework is
to first generate candidate set by using statistically-based criteria and then use genetic algorithm to find optimal solution.

All previous studies focus on one particular part of the overall problem. To our knowledge, in the literature little attention
was paid to deal with the case where both network characteristics and passenger choice behavior are unavailable/unknown,
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and few researchers characterized route choice behavior in metro networks in large scale. It remains a challenge to develop a
comprehensive framework which can solve both mentioned issues simultaneously using only travel time observations. In
this sense, the Bayesian computational tools become attractive as it builds a posterior distribution by simply combining like-
lihood of the observable and our prior knowledge about the model (see Robert (2014) for a review). In a previous study,
Hazelton (2010) developed an unified framework which integrates a statistical linear inverse structure with network-based
transport model. The author illustrated the performance of this framework by estimating perception parameters in logit
route choice models in Leicester, UK. The successful application of this model also inspired us to apply Bayesian inference
on metro networks in this paper. Despite calibrating choice models, Bayesian inference also exhibits excellent performance
in stochastic traffic assignment modeling (Wei and Asakura, 2013) and vehicle travel time estimation using only Global Posi-
tioning System (GPS) data (Westgate et al., 2013). With the help of Bayesian inference and large quantities of travel time
observations provided by smart card data, this paper introduces an integrated modeling framework to quantify both network
attributes and passenger route choice behavior.

3. Modeling framework

To associate the observed passenger travel time with link costs and route choices, in this section we first propose a net-
work reconstruction process, which distinguishes transfer stations by services and adds transfer links among different plat-
forms correspondingly. Afterwards, we present a brief description of the integrated inference problem and introduce all
model parameters in this framework. Then, we determine route choice set Rw for each O–D pair w. Given actual network
configuration and property, in doing so one may apply a constrained brute-force-search (BFS) method or k-shortest path
method. After obtaining choice set, a Multinomial Logit (MNL) model is applied to measure the probability of choosing each
choice r among the available set Rw given route attributes, where travelers’ sensitivity to each attribute is parameter to be
estimated. Finally, as a key component of the proposed framework, a Bayesian inference model is built to estimate the
unknown parameter vectors, by taking all registered travel time from smart card transactions as observations.

3.1. Network reconstruction

In order to better model passenger travel time and route choice behavior, we reconstruct a metro network following the
examples illustrated in Fig. 1. In general, we can model each station as a single node in a sense similar to a map. However, by
doing so we essentially miss the transfer cost for interchanging from one service to another (including walking and waiting),
which is a crucial component of total travel time. In order to take transfer cost into consideration, we reconstruct a metro
network by separating each transfer station as different nodes by services. For example in Fig. 1, nodes marked as ‘‘T’’ rep-
resent an identical transfer station in the metro system; however, we distinguish them on each metro service and add trans-
fer links to characterize transfer cost (including waiting) from platforms of one service to another. Essentially, in the case
that n n P 2ð Þ services pass through a single transfer station, C2

n transfer links will be created between every pair.
Despite that links could be directed as trains are operated in two-way, we model a metro network as undirected in this

study for simplicity, assuming that bi-directional travel costs between two adjacent stations are characterized by an iden-
tical distribution. In other words, we assume that two reciprocal links have the same properties.

3.2. Problem description

We consider a general metro network GðN;AÞ, consisting of a set of nodes N Nj j ¼ nð Þ and a set of links A Aj j ¼ mð Þ. As we
use travel time as cost measure in this study, ‘cost’ and ‘time’ as treated the same (interchangeable) throughout the paper.
We assume that link travel time x ¼ x1; . . . ; xa; . . . xmð Þ> are random variables, in the sense that services are not punctual to
exact timetables due to various disturbances; as a result, stochastic travel time will be observed as in reality. This is also
Fig. 1. Reconstructing network by distinguishing transfer stations and adding transfer links.
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prerequisite to apply Bayesian statistical inference in our framework. Despite the fact that statistical properties of link travel
time can be obtained from large quantities of service operation logs, the detailed train arrival/departure time and trajectory
data along the service is seldom available. In this case, the Bayesian inference might be advantageous by taking unknown
parameters as random variables and using travel time transactions as observations.

Let W be the set of O–D pairs; Rw denotes the set of possible routes connecting O–D pair w; Tw is the set of individual
travel time obtained from those passengers traveling on O–D pair w, which is the final observable in this framework. We
denote T ¼

S
w2W Tw as the union of travel time observations from all O–D pairs. We start by introducing a combination

of four parameter vectors, which capture different aspects of a metro system in our model:

� c: describing network link costs;
� a: describing link cost variation (coefficient of variation);
� h: describing passenger route choice behavior;
� m: describing extra cost on waiting/access/egress/failed boarding.

The details of these parameter vectors will be introduces in the following. In principle, our aim in this study is to use
available observations (travel time T) to infer all the unknown parameters above.

To allow for travel time reliability in our model, we assume that link cost xa are random variables characterized by normal

distribution N ðca; ðacaÞ2Þ, of which the standard deviation is in proportion to its mean (r ¼ al). We assume that all link costs
are independent. Thus, the overall distribution for all links can be written as:
x � N c;diag acf g2
� �

; ð1Þ
where c ¼ c1; . . . ; ca; . . . cmð Þ> represents the mean travel time for all links and a ¼ r=l is the coefficient of variance. Here, we
assume that a is a universal parameter that captures the variation of link travel time caused by potential factors including
delays, disruptions, time-dependent service timetables, etc. The independent normality assumption of link cost is crucial in
our modeling, as it provides us a simplified way to measure route travel time given the additive property of normal
distributions.

In modeling passenger route choice behavior in the metro network, we assume that choice probability is characterized by
a MNL model and the representative utility of each route is measured as a linear combination of different route attributes
with parameters h ¼ h1; . . . ; hKð Þ>.

As stated, the smart card system only provides us with the inter-tapping interval for each individual traveler, which is
treated as travel time observations. In spite of transfer costs, the inter-tapping interval still involves in the access/egress
walking time at boarding/alighting stations respectively, and waiting time at boarding platforms. In order to capture these
extra costs, we impose a universal cost y on all O–D pairs and assume it to be characterized by a normal distribution:
y � N m;r2
y

� �
; ð2Þ
where m is an unknown parameter representing the mean of extra time and ry is standard deviation of y. In doing so, we
assume that this additional cost m are identical across all stations for simplicity, despite that the physical configurations
of stations are different.

Note that the normal distribution assumption of link travel time is not mandatory in the proposed framework, but it will
simplify the following step on calculating route cost. One can replace the normal assumption with any other distributions to
facilitate the modeling requirements. We assume all parameters to be independent of time of day and characterized by uni-
versal values. In reality, parameters such as m and a might varies with time of day (because of temporal demand profiles and
service timetables). However, for simplicity, we essentially disregard the temporal dynamics and keep this assumption
across the paper.
3.3. Generating route choice set

Before modeling passenger route choice behavior, we need to generate a choice set Rw for each O–D pair w, comprising all
possible alternatives. In doing so, one may apply different strategies, such as link elimination, labeling and k-shortest-paths.
Nevertheless, given the limited size and its simple structure of a metro network, a brute-fore-search (BFS) algorithm could be
more advantageous than other methods in generating choice sets in shorter time. When multiple services share the same
track, the number of alternative routes for those O–D pairs using the covered track will increase by orders of magnitude,
in particular for large networks. In this case, one need to pay special attention on filtering out those irrational alternatives
(i.e., restricting maximum number of transfers or restricting maximum travel time) or using an alternative network recon-
struction model to support the modeling of shared track. But this also highly depends on the user behavior—removing some
choice arbitrary will result in a bias set, since some travelers may trade two transfers for an available seat.

Note that the proposed network reconstruction processes may produce some redundant alternatives, which are in prin-
ciple illogical in reality, such as:
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� route with first link being a transfer link;
� route with last link being a transfer link;
� route containing two consecutive transfer links (appears where more than two services go through the same transfer

station).

To better model choice behavior, we identify those routes with previous attributes and discard them when generating the
final route choice set Rw.

3.4. Bayesian formulation

In this subsection we derive the Bayesian posterior distribution of parameter vectors given travel time observations.
Based on the previous description, the unknown parameters are mean of link travel time c, coefficient of variation a of link
cost, parameters h for the MNL route choice model and average extra cost m. The observables we have are the travel time
transactions for each O–D pair obtained from smart card data.

Taken together, applying Bayes’ theorem on the unknown parameters and observations will give us the posterior density
p c;a; h;mjTð Þ ¼ p T jc;a; h;mð Þp c;a; h;mð Þ
p Tð Þ ; ð3Þ
where the denominator P Tð Þ is the marginal density for T over all unknown parameters
p Tð Þ ¼
Z Z Z Z

p c;a; h;mð Þp Tjc;a; h;mð Þdcdadhdm: ð4Þ
With this formulation, P Tð Þ is in fact a normalizing constant expressed as high-dimensional integrals, being independent
of any unknown parameters. Thus, by further assuming that all unknown parameter vectors (and all elements in each vector)
are independent, we have
p c;a; h;mjTð Þ / p T jc;a; h;mð Þp cð Þp að Þp hð Þp mð Þ; ð5Þ
where p dð Þ is the prior distribution of unknown parameter d. Note that the probability of observing travel time T conditional
on all unknown parameters equals the likelihood of all parameters given travel time observations, which means
p T jc;a; h;mð Þ ¼ L c;a; h;mjTð Þ.

Next, we focus on the likelihood function L c;a; h;mjTð Þ. By distinguishing travel time observations by their O–D pairs, we
can re-write the likelihood as
L c;a; h;mjTð Þ ¼
Y

w2W

p Twjc;a; h;mð Þ: ð6Þ
As stated, there often exists more than one possible route for an O–D pair w, so that the probability of observation travel
time t from an individual also depends on the alternative routes he/she may take. Therefore, by applying the formula of total
probability on each observation t (t 2 Tw) against all possible routes Rw, the probability of observing travel time t on O–D pair
w can be expressed as
pw tjc;a; h;mð Þ ¼
X
r2Rw

h tjr; c;a; h;mð Þf w rjc;a; h;mð Þ; ð7Þ
where f w rjc;a; h;mð Þ is the conditional probability of choosing route r from choice set Rw given all model parameters, and
h tjr; c;a; h;mð Þ represents the conditional probability of observing travel time t given that route r is taken on O–D pair w.

Based on our primary assumption that link costs all follow normal distribution independently, we know that tjr; c;a; h;m
also follows a normal distribution given its additive property
tjr; c;a; h;m � N
X
a2r

ca þm;a2
X
a2r

c2
a þ r2

y

 !
; ð8Þ
and thus
h tjr; c;a; h;mð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p a2

P
a2rc2

a þ r2
y

� �r exp
t �

P
a2rca þm

� �� �2

2 a2
P

a2rc2
a þ r2

y

� �
0@ 1A: ð9Þ
To model passenger route choice behavior, we apply a MNL choice model, which usually assumes that representative util-
ity Vr on route r is a linear function of route attributes Xr ¼ Xr1; . . . ;XrKð Þ> (which is a function of cost parameters)
Vr h; c;a;mð Þ ¼ h>Xr ¼
X

k

hkXrk; ð10Þ
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where hk is sensitivity parameter for attribute Xrk. Researchers have tried to quantify the impact of various attributes in
determining passenger route choices in metro systems, such as in-vehicle time, waiting time, walking time, number of trans-
fers and occupancy (Raveau et al., 2014). However, we cannot apply previous estimations directly since such behavioral
parameters vary enormously from system to system, from city to city. Thus, one of the main purposes of such modeling
framework is to infer parameter vector h case by case (Hazelton, 2010). Taken together, when traveling on O–D pair w,
the conditional probability f w rj�ð Þ of choosing route r conditional on other parameters �ð Þ is
f w rjc;a; h;mð Þ ¼ exp Vrð ÞP
r02Rw

exp Vr0ð Þ : ð11Þ
Therefore, the likelihood of O–D pair w can be given as
p Twjc;a; h;mð Þ ¼
Y
t2Tw

X
r2Rw

h tjr; c;a; h;mð Þf w rjc;a; h;mð Þ
 !

: ð12Þ
Substituting Eqs. (6) and (12) into Eq. (5), we can write the posterior probability as
p c;a; h;mjTð Þ /
Y

w2W

Y
t2Tw

X
r2Rw

h tjr; c;a; h;mð Þf w rjc;a; h;mð Þ
 ! !

� p cð Þ � p að Þ � p hð Þ � p mð Þ ð13Þ
Before implementing the Bayesian inference framework, we need to specify exact prior distributions p dð Þ for the
unknown parameters c;a; h and m. Prior distributions are important if the number of observations is limited. However,
for a metro system, the smart card system actually provide us with large quantities of travel time observations, helping
us to correct our prior knowledge to a great extent. In practice, it would be better to propose prior distributions based on
our experience or existing knowledge about the systems. In the case that we almost have no information about the param-
eters, a broad distribution such as uniform should be used.

The posterior distribution can provide not only point estimations for the unknown parameters but also their Bayesian
confidence interval and Bayesian p-values for the purpose of hypothesis tests. However, in practice, it is usually impossible
to get analytic estimations given its complex formulation. In the next section, we show a computational way to obtain the
posterior distribution.
4. Solution algorithm

If the conditional distribution can be written in closed form, ideally one can compute the marginal posterior distribution
for each individual parameter analytically by calculating integrals. However, in our case, this approach is essentially impos-
sible due to the difficulties in deriving the posterior distribution in Eq. (13) given its complicated formulation, the high-
dimensional nature of the parameter space and in particular the normalizing integrals appearing in the denominator of
Eq. (3). For such problems, in practice one usually uses the MCMC approach to construct an updating algorithm to generate
dðtþ1Þ once we know dðtÞ (Robert and Casella, 2004). Essentially, MCMC is a brute force approach to maximum likelihood esti-
mation problem for complex models, where maximum likelihood is difficult to calculate using conventional optimization
methods or prior knowledge is important and needed. The Metropolis–Hastings (M–H) algorithm is a widely applied MCMC
method, which enables us to sample candidate from a posterior distribution without knowing the closed form (Metropolis
et al., 1953; Hastings, 1970). In each iteration, the M–H algorithm will generate a candidate from a pre-defined proposal dis-
tribution and then determine whether to accept it by calculating acceptance probability, which is a function of the ratio
between target distribution density of the new candidate and the current sample respectively. By this means, we clear
out the normalizing constant during the sampling. On the other hand, the Markov chain also shows advantages in a way that
its stationary distribution is the target (or posterior) distribution we want to sample. Therefore, after obtaining enough real-
izations dð1Þ; . . . ; dðMÞ, one can estimate property I of parameter d using
bI ¼ 1
M � B

XM

i¼Bþ1

f dðiÞ
� �

; ð14Þ
where B is a fixed number representing the burn-in period and M is the total number of samples. The burn-in samples are
discarded as they might be biased given the arbitrarily chosen initial value dð0Þ. After the burn-in period, the marginal dis-
tribution of the Markov chain is converging to its stationary state. To better determine the length of burn-in period, research-
ers have proposed different techniques in the literature (Geweke, 1992). The real characteristics of parameter d can be
measured using samples drawn from the posterior distribution p after the burn-in stage.

Given the high-dimensional nature of the studied problem, we perform a variable-at-a-time Metropolis sampling scheme
(Metropolis et al., 1953). In doing so, we combine all parameter vectors in the posterior distribution as a full vector
d ¼ c>;a; h>;m
� �> ¼ c1; . . . ; cN ;a; h1; . . . ; hK ;mð Þ> ¼ d1; . . . ; dNþKþ2ð Þ>: ð15Þ
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The variable-at-a-time Metropolis then performs Metropolis sampling scheme on each coordinate of the parameter space
in sequence, in the meanwhile other coordinates (parameters) remain fixed. Essentially, we may take an arbitrary proposal

distribution q d�i jd
ðtÞ
i

� �
to draw samples for the ith coordinate, and accepting new candidate d�i based on M–H algorithm. How-

ever, in practice choosing an appropriate proposal distribution is crucial to performing the sampling process effectively. For
simplicity, we apply a Gaussian random walk Metropolis proposal to generate new candidates in a sequential order, in which
d�i ¼ dðtÞi þ �
ðtÞ
i ; ð16Þ
where �ðtÞi � N 0;r2
i

� �
and ri is the proposal standard deviation for the ith coordinate. In other words, conditioning on the

current sample, the new candidate follows a normal distribution d�i jd
ðtÞ
i � N dðtÞi ;r2

i

� �
. Thus, for the symmetric Gaussian dis-

tribution proposal, we have q d�i jd
ðtÞ
i

� �
¼ q dðtÞi jd

�
i

� �
, which simplifies the acceptance probability in M–H algorithm to
A d�i ; d
tð Þ

i

� �
¼min 1;

p0 d�i
� �

q dðtÞi jd
�
i

� �
p0 dðtÞi

� �
q d�i jd

ðtÞ
i

� �
8<:

9=; ¼min 1;
p0 d�i
� �

p0 dðtÞi

� �
8<:

9=;; ð17Þ
where p0 d0i
� �

is the target (posterior) probability by changing only the ith parameter to d0i and keeping other parameters as
their latest updated values. In other words, by updating parameters in sequential order, p0 d0i

� �
is calculated as the posterior

density
p0 d0i
� �
¼ p dðtþ1Þ

1 ; . . . ; dðtþ1Þ
i�1 ; d0i; d

ðtÞ
iþ1; . . . ; dðtÞNþKþ2jT

� �
: ð18Þ
Taken together, we summarize the variable-at-a-time Metropolis algorithm as the following processes:

4.1. Variable-at-a-time Metropolis sampling

(V1) Specify initial samples d 0ð Þ ¼ c 0ð Þ
1 ; . . . ; c 0ð Þ

N ;a 0ð Þ; h 0ð Þ
1 ; . . . ; h 0ð Þ

K ;m 0ð Þ
� �>

; set t  1.

(V2) For d tð Þ, sampling new value dðtþ1Þ
i conditional on its current value dðtÞi in sequential order i ¼ 1; . . . ;N þ K þ 2ð Þ using

M–H sampling scheme (see following).
(V3) If t < M, set t  t þ 1 and return to Step (V1); Otherwise, stop sampling.

In order to avoid generating candidate from a high-dimensional distribution directly, the variable-at-a-time generate new
sample for each coordinate in turn in Step (V2). In doing so, new candidate on each coordinate is sampled based on the fol-
lowing M–H scheme.

4.2. Metropolis–Hasting sampling

(M1) Sample candidate value d�i using the Gaussian random walk proposal (see Eq. (16)).
(M2) Compute acceptance probability using Eq. (17). The target (posterior) distributions are calculated as:
p0 d�i
� �

¼ p T jd�i ; d
tð Þ
�i

� �
p d�i ; d

tð Þ
�i

� �.
p Tð Þ / p Tjdðtþ1Þ

1 ; . . . ; dðtþ1Þ
i�1 ; d�i ; d

ðtÞ
iþ1; . . . ; dðtÞNþ4

� �
p d�i
� �

; ð19Þ

and

p0 dðtÞi

� �
¼ p TjdðtÞi ; d

tð Þ
�i

� �
p dðtÞi ; d

tð Þ
�i

� �.
p Tð Þ / p Tjdðtþ1Þ

1 ; . . . ; dðtþ1Þ
i�1 ; d�i ; d

ðtÞ
iþ1; . . . ; dðtÞNþ4

� �
p dðtÞi

� �
; ð20Þ

where d tð Þ
�i ¼ d tþ1ð Þ

1 ; . . . ; d tþ1ð Þ
i�1 ; d tð Þ

iþ1; . . . ; d tð Þ
M

� �
is parameter set from the latest updated coordinates except the ith (i.e. dðtÞi ).

The normalizing constant p Tð Þ, together with p d tð Þ
�i

� �
in both numerator and denominator, can be canceled out when

calculating p0 d�i
� �

=p0 dðtÞi

� �
.

(M3) Sample a value dðtþ1Þ
i according to the following:
dðtþ1Þ
i ¼

d�i with probability A d�i ; d
tð Þ

i

� �
dðtÞi otherwise:

8<: ð21Þ
The variable-at-a-time Metropolis is a good genetic choice for high-dimensional problems as our case, since it keeps only
one dimension (i.e. the ith coordinate) as variable each time; while the general Metropolis moving all coordinates at once,
resulting in large rejection rate. For each unknown parameter, the algorithm outputs a collection of iteration-stamped sam-
ples, whose stationary distribution is its marginal posterior distribution.
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5. Case study

For the purpose of model illustration and verification, in this section we apply the proposed modeling framework on Sin-
gapore’s Mass Rapid Transit (MRT) network. The Bayesian inference model is built on real-world travel time (between tap-
ping-in and tapping-out) observations collected on one day (19th, March, 2012) in Singapore as an example.

5.1. Singapore MRT network

We only consider the arterial network of Singapore’s metro systems by removing extensions and light rail transit services.
Fig. 2 shows the basic structure of the adapted network, which consists of four services (shown in different colors) and 88
stations. The reconstructed network contains 99 nodes and 107 links, of which 95 are in-vehicle links and 12 are transfer
links. In this network, most transfer stations connect only two services. In the center of the figure we can see a special case
that three services pass through the same transfer station – Dhoby Ghaut. For this special case, three transfer links will be
created.

Table 1 lists all transfer links and the corresponding platforms they connect.

5.2. Route choice behavior

In order to generate route choice set Rw, we performed BFS method described in the modeling framework and removed all
redundant alternatives. After obtaining choice set Rw, we used an MNL model route choice model as defined in Eq. (11) to
computed route choice probability. A variety of studies on passenger route choice behavior have been conducted based
on field survey data in the literature (Guo and Wilson, 2007; Wardman and Whelan, 2011; Raveau et al., 2014). For instance,
Raveau et al. (2014) studied route choice behavior in two metro networks – London Underground and Santiago Metro, by
taking various attributes into consideration, including different time components, transfer experience, level of crowdedness,
network topology and other social-demographic characteristics. In fact, our modeling framework provides us with enough
flexibility to apply diverse types of utility function in the choice model. Nevertheless, in this study we only examined a sim-
ple example, in which the representative utility Vr of route r is completely characterized by two attributes (K ¼ 2): (1) total
in-vehicle travel time Xr1 ¼

P
a2rnrt

ca, and (2) total transfer time Xr2 ¼
P

a2rt
ca, quantifying route utility as
Vr ¼ h1

X
a2rnrt

ca þ h2

X
a2rt

ca; ð22Þ
Fig. 2. Testing network adapted from Singapore MRT. Source: http://exploresg.com/mrt/.

http://exploresg.com/mrt/


Table 1
Transfer links in Singapore MRT network.

Station Platform A Platform B

Bishan NS17 CC15
Buona Vista EW21 CC22
City Hall EW13 NS25
Dhoby Ghaut NS24 CC1
Dhoby Ghaut NS24 NE6
Dhoby Ghaut NE6 CC1
HarbourFront NE1 CC29
Jurong East EW24 NS1
Outram Park EW16 NE3
Paya Lebar EW8 CC9
Raffles Place EW14 NS24
Serangoon NE12 CC13
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where route r is considered as a set of links and rt is the set of transfer links in route r. In this formulation we do not take
transit fares and waiting time of the first stage into consideration, because fare is only computed by the shortest alternative
in distance (i.e. transit fares are the same for different route alternatives) and waiting time of the first stage is assumed to be
the same across all trips. Therefore, both terms can be canceled our in the utility function. Note that Vr is also a function of
unknown parameters. Under the above assumptions, the probability of choosing route r conditional on other parameters is
given by
f w rjc;a; h;mð Þ ¼
exp h1

P
a2rnrt

ca þ h2
P

a2rt
ca

� �
P

r02Rw
exp h1

P
a2r0nr0t

ca þ h2
P

a2r0t
ca

� � : ð23Þ
5.3. Prior distributions

In the Bayesian inference framework, prior distributions should be given in closed form as chosen by the experimenter.
Prior knowledge is crucial to inferring parameters when we have limited number of observations. In our case, as all metro
users have to use their smart cards to tap-in/-out for the purpose of fare payment, large quantities of travel time observation
is produced, stamped with both spatial and temporal information. Although the large number of observations can help us to
correct our prior knowledge on the unknown parameters to a great extent, we still may benefit from an appropriate prior
distribution.

Previous travel experience in Singapore’s metro network indicates that travel time between two successive stations is
about 2 min (Sun et al., 2012). We therefore assume a normal prior with l ¼ 2 min and r ¼ 1 min on average link cost

ca (for all links), giving that p cað Þ ¼ 1ffiffiffiffi
2p
p exp � 1

2 ca � 2ð Þ2
� �

. Given the independent link cost assumption, the total prior for

all links can be expressed as p cð Þ / exp � 1
2

P
ca2c ca � 2ð Þ2

� �
. Here we do not assign different priors to distinguish in-vehicle

links and transfer links.
Extra cost y in a metro trip is also estimated based on previous study. We proposed that m � N 4;1ð Þ – a normal distri-

bution with mean 4 min and variance 1 min2. For the variance of extra cost, we take an empirical value that r2
y ¼ 1:5 min2.

In terms of coefficient of variation a and route choice parameters h ¼ h1; h2ð Þ, we almost have no available prior informa-
tion to make a first guess. Therefore, we assigned uniform priors on these three parameters: a � U 0;1ð Þ and hi � U �4;0ð Þ for
i ¼ 1;2. In fact, if all prior distributions are uniform, maximize a posterior (MAP) estimation will be same as maximize like-
lihood estimation (MLE).

5.4. Summary

The final parameter vector d contains N þ K þ 2 ¼ 111 elements. In each iteration, the variable-at-a-time Metropolis
updates these parameters in turn. We implemented the sampling algorithm described in previous section using MATLAB.
To avoid biased travel time observations, we discarded observations from O–D pairs with less than 100 transactions and
selected a subset (by choosing 100 observations randomly) from each O–D pair in the remaining data sets as final observable
Tw. The size of O–D pair set is jWj ¼ 1897; hence, total number of travel time observations used in this study is 189,700. The
reason we only choose a subset instead of the full data set is that the computational time is highly dependent on the size of
O–D pairs jWj and number of travel time observations Tw (The total number of observed O–D pair before the filtering is
jWj ¼ 7444). We want to reduce sample size while preserving enough number of O–D pairs to cover all potential links. Thus,
we used 100 as a filter criteria, which ensures that all links are covered by at least one O–D pair. In principle, if computational
time is not a consideration, one may use more observations to have a better estimation. However, in most cases
computational time is the critical factor. Therefore, one may start multiple runs with small samples to obtain some initial
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guesses on parameters and then apply MCMC with these estimated values on the full data set to have better estimation. We
employed Gaussian random walk Metropolis proposals on all the unknown parameters; however, in order to build a well-
mixed chain of realizations for each parameter, we chose different proposal standard deviations to allow for their character-
istics. For instance, the proposal standard deviations of in-vehicle links and transfer links are chosen as 0.2 min and 0.5 min,
respectively. The initial values and the corresponding proposal standard deviations for all parameters are listed in Table 2. In

fact, the initial value dð0Þi for each parameter is chosen as the mean of its prior distribution. We conducted computation
experiments on a PC with an Intel Core i7 3.40 GHz CPU and 16 GB RAM. Considering the large size of O–D pairs, calculating
posterior density (or log-posterior density) becomes computationally intensive. It takes about 30 s for each iteration of the
variable-at-a-time sampling. The calculation process could be boosted by adapting the code to C or C++. Despite the MCMC
method, the estimation could also be solved using other computational approaches (e.g., introducing latent variables on
route choice and applying the EM algorithm).

The sampling is run for M = 10,000 iterations, of which B ¼ 5000 are discarded as the burn-in period. We observed sig-
nificant serial correlation in the sampled values of each coordinate di. Fig. 3 shows the autocorrelation plots for chains of
a; h1; h2 and m. Despite a good acceptance rate for all chains, we still found that the realizations are strongly dependent.
To avoid such correlation, one may use thinning approach to get spaced samples. For example, one may retain every 50th
value generated to obtain a subset with correlation less than 0.1. However, given the considerable cost in obtaining each
sample, in this study we did not thin the results (Geyer, 1992).

As stated, we started the MCMC algorithm using the initial value and proposal standard deviation for each parameter as
given in Table 2. In total, 5000 effective samples for each parameter were drawn. The Bayesian analysis provides us with not
only a point estimator but also a distribution to construct Bayesian confidence interval. The last two columns of Table 2 show
the final results of our inference based on those effective samples, including the mean and 95% Bayesian conference interval
(CI). As can be seen, the large number of travel time observations have vastly corrected our biased prior knowledge of the
system.
Table 2
Parameter description and estimation.

Parameter Prior ri proposal dð0Þi Mean 95% Bayesian CI

a Uð0;1Þ 0.005 0.500 0.168 [0.167, 0.169]
h1 Uð�4;0Þ 0.050 �2.000 �0.462 [�0.473, �0.451]
h2 Uð�4;0Þ 0.050 �2.000 �0.959 [�0.988, �0.931]
m N ð4;1Þ 0.010 4.000 3.270 [3.255, 3.283]
c1 N ð2;1Þ 0.200 2.000 3.651 [2.584, 3.718]
c2 N ð2;1Þ 0.200 2.000 2.947 [2.880, 3.013]
c3 N ð2;1Þ 0.200 2.000 3.660 [3.591, 3.728]
c4 N ð2;1Þ 0.200 2.000 3.107 [3.038, 3.169]
� � �
c107 N ð2;1Þ 0.500 2.000 5.247 [5.151, 5.333]

Fig. 3. Autocorrelation plots for chains of a; h1; h2 and m.



Fig. 4. Link cost estimation (mean and 95% Bayesian confidence interval) for the EW line (shown in green in Fig. 2). Link with ID n represents in-vehicle link
between station EW n and EW nþ 1.

Fig. 5. Prior and posterior density for (a) a, (b) m, and (c) h1 and h2.
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We display the estimation results of link cost on the EW service (shown in green in Fig. 2) in Fig. 4. The dots depict the
mean values of each link and the corresponding errorbar shows the 95% Bayesian confidence interval. As a guide, the two
insets show the distribution of c1 and c28, which are the first and last links on the East–West service. Despite the same initial
values and proposal standard deviation were used in the inference process, the MCMC algorithm has successfully distin-
guished cost attributes for different links.

Fig. 5 displays the results of Bayesian inference on a;m; h1 and h2. In all the panels, the solid lines depict the kernel density
estimates of parameters. As comparison, the dashed lines depict their prior distributions. The coefficient of variation a is
characterized by a centralized distribution, the mean of which is far from its initial value. The posterior mean and standard
deviation are 0.1681 and 0.0006, respectively. Although we expect that a flat normal prior N ð4;1Þ could characterize m, in
contrast the estimation process gives us a more centralized distribution shown in panel (b), with a very small standard devi-
ation of about 0.007 min, suggesting that in average passengers may spend about 3 min in total as extra cost. In fact, the
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reason we did not get a distribution with higher variance is that m only capture the mean of extra cost y, while the variance

of extra cost is assumed to be known as r2
y ¼ 1:5 min2. Thus, the result is consistent with our expectation, suggesting that we

may use a more appropriate prior distribution to characterize m.
Essentially, by combining the estimation results on link cost c, coefficient of variation a and extra cost m, operators and

agencies can better estimate travel time and its variability for all O–D pairs in the network, helping metro users to better
plan their trips. Both users and agencies can benefit from such information.

Passenger route choice behavior is reflected in parameter h. Panel (c) in Fig. 5 shows the distribution of h1 and h2, respec-
tively. The same uniform prior is also plotted as a guide. As can be seen, the Bayesian inference has significantly distin-
guished the effect of transfer time from in-vehicle time. The posterior mean of h1 is �0.462 and its standard deviation is
0.006. For h2, the posterior mean is �0.959 and the posterior standard deviation is 0.015. The significant difference between
h1 and h2 suggests that metro users value transfer time more than in-vehicle time. The result conforms to previous survey-
based studied in London Underground and Santiago Metro (Raveau et al., 2014). In addition, the inference framework also
provides Bayesian confidence interval for both h1 and h2.
Fig. 6. Contour plot of the joint posterior density for h1 and h2 when other parameters are set to be mean values of their effective samples.

Fig. 7. Passenger flow assignment in MRT network (a–b) before and (c–d) after 12 p.m.
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Finally, we plot the joint posterior density for h1; h2ð Þ in Fig. 6. To estimate the joint density, we fixed all other parameters
as the mean values of their effective samples (as provided in Table 2) and took only h1 and h2 as parameters. Clearly, the
maximum value can be found around ð�0:462;�0:959Þ; however, the density decreases at different speed given different
parameter direction. The figure provides us with two implications. On one hand, the peaked shape of joint posterior distri-
bution shows that the density is sensitive to the oscillation of both h1 and h2, suggesting that changing route choice param-
eters arbitrarily may strongly influence the assignment results. This also indicates that the proposed choice model exhibits
great potential in capturing passenger route choice behavior. On the other hand, one may see that the slowest decrease could
be achieved by increasing/decreasing h1; h2ð Þ simultaneously. This suggests that, instead of sampling each parameter sepa-
rately, we may modify the Metropolis algorithm to obtain the samples of h1 and h2 collectively by considering their corre-
lation. By doing so, we may get a faster convergence of the MCMC chains with less computation time.

In fact, in this numerical example we employed a simple model containing only two parameters to characterize passenger
route choice behavior. For this special case, only in-vehicle time and transfer time are considered as important attributes
influencing passenger perception. However, essentially one may take more attributes into consideration in route choice
modeling, such as level of crowdedness, number of transfers (Raveau et al., 2014) and path correlation correction terms
(Cascetta et al., 1996; Ben-Akiva and Bierlaire, 2003). The proposed framework has the capacity to handle a more sophisti-
cated route choice model.

By using the route choice parameter h, we computed the probability f wðrjc;a; h;mÞ of choosing route r for each O–D pair
w. After integrating f w into O–D passenger demand, we obtained the flow assignment results in the studied network. We
depict the assignment profile in Fig. 7. In this figure, panel (a) and (b) show the estimated link flow profiles based on pas-
senger demand before 12 p.m in both directions, while panel (c) and (d) illustrate the flow assignment of passenger demand
after 12 p.m. As can be seen, flow assignment shows strong heterogeneity given the specific passenger demand pattern.
6. Conclusion and discussion

In this paper, we have made use of large quantities passenger travel time observations in a metro network to develop an
integrated Bayesian approach to infer both network attributes and passenger route choice behavior. The advantage of this
framework lies in the Bayesian statistical paradigm, which requires limited/partial information as input, but provides com-
prehensive posterior knowledge of the system.

Travel time reliability has been documented extensively in terms of urban road transport; however, as another major
component of public transit, metro system attracts little attention in previous literature. One possible explanation is that
metro systems have dedicated infrastructure. On the other hand, this may also due to the lack real-world travel time and
route choice observations, making researchers underestimate its reliability issues: metro services have long been assumed
punctual to timetables. The emergence of smart card ticketing systems, as implemented in Singapore, provide us great
opportunities to understand travel time reliability than ever before. The inference results for link travel time and coefficient
of variation offered by the proposed Bayesian framework could be applied in real-world scenarios to better predict travel
time and its variability, providing metro users with better travel information.

As service reliability is highly determined by passenger demand (such as disruption caused by huge demand in peak
hours), passenger flow assignment problem in a complex metro network is particularly important with respect to providing
good services and sharing profit among operators. On the other hand, knowing the number of passengers traveling on each
link at given time is also a central question in disruption/emergency scenarios, where operators have to make quick response
such as introducing shuttle bus services (Jin et al., 2013; Jin et al., 2014). Previous studies use discrete choice analysis exten-
sively to predict passenger choice behavior. However, such a model requires preference data and still displays great variabil-
ity in real-world estimation. In this context, revealing route choice from observed passenger travel time could be more
advantageous (Kusakabe et al., 2010; Sun and Xu, 2012; Zhou and Xu, 2012; Zhu et al., 2014). Therefore, an integrated Bayes-
ian inference framework for both travel time estimation and route choice inference is appealing.

The developments in this paper have been focused on a general framework, while the models and examples we presented
in this paper still has some limitations. First, we imposed a strong assumption on travel time modeling, that is, all link costs
are characterized by independent normal distributions. This hypothesis has simplified the overall modeling and showed
great computational advantage. However, it is not verified empirically and should be further discussed, since travel time
on adjacent links might be (positively/negatively) correlated. Second, as mentioned in Section 3, some parameters are sim-
plified without considering the temporal dynamics introduced by demand profiles, service timetables and other time-depen-
dent factors. In practice, if one is interested in obtaining time-dependent parameters, he/she could divide the whole data sets
into slices and apply the framework on each of them. Third, we estimated a static and simplified route choice model, which
takes only two attributes (in-vehicle travel time and total transfer time) into account. In reality, transit user behavior is also
determined by other factors such as crowdedness, availability of seats and travel time variability, and link cost might become
sensitive to passenger demand as well. In this case, a more sophisticated link cost model (e.g., demand-dependent and time-
dependent) and route choice model (e.g., with path correlation correction) are required to better facilitate the estimation of
travel time and passenger flow assignment patterns.

Nevertheless, the overall framework has demonstrated good capacity to solve the problems simultaneously. Applying the
inference results on real passenger demand, link flow profile can be estimated in temporal scale, helping us to infer temporal
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train loading and measure level of crowdedness. The results could also be used to reveal transfer demand to help us identify
critical transfer stations/platforms/facilities, providing valuable information to operators and agencies to better design and
operate the whole metro system. In future research we are interested in further exploring the demand-dependent and time-
dependent travel time characteristics of metro systems and developing this framework to facilitate the modeling of larger
and more complex metro networks. On the other hand, we are interested in verify and validate the model with large-scale
survey data. At present, the proposed model is still in an ideal form without verification and validation using real passenger
preference data such as in (Raveau et al., 2014). As a result, although the problem could be solve using this Bayesian frame-
work, we still have limited knowledge about the accuracy of the results. Meanwhile, the validation could also help us with
sensitivity analysis different travel time and route choice models.

Our results also have a number of potential implications for both practice and research. First, link travel time and its var-
iability is characterized using real-world travel time observations from smart card transactions. This data-driven approach
can be widely applied in other analyses. Second, the proposed cost estimation framework may help operators identify the
bottleneck of a metro network; the route inference solution may contribute to better understand transit demand patterns,
more accurate profit sharing and more effective disruption/emergency response. Third, by applying this framework, we can
further reveal other service satisfactory indicators, such as the availability of seats, the standing, walking times and the reli-
ability of total travel time; hence, the results of this paper can applied on various choice modeling problems, serving future
decision making processes.
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