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Timetable design is crucial to the metro service reliability. A straightforward and com-
monly adopted strategy in daily operation is a peak/off-peak-based schedule. However,
such a strategy may fail to meet dynamic temporal passenger demand, resulting in long
passenger waiting time at platforms and over-crowding in trains. Thanks to the emergence
of smart card-based automated fare collection systems, we can now better quantify
spatial–temporal demand on a microscopic level. In this paper, we formulate three optimi-
zation models to design demand-sensitive timetables by demonstrating train operation
using equivalent time (interval). The first model aims at making the timetable more
dynamic; the second model is an extension allowing for capacity constraints. The third
model aims at designing a capacitated demand-sensitive peak/off-peak timetable. We
assessed the performance of these three models and conducted sensitivity analyzes on dif-
ferent parameters on a metro line in Singapore, finding that dynamical timetable built with
capacity constraints is most advantageous. Finally, we conclude our study and discuss the
implications of the three models: the capacitated model provides a timetable which shows
best performance under fixed capacity constraints, while the uncapacitated model may
offer optimal temporal train configuration. Although we imposed capacity constraints
when designing the optimal peak/off-peak timetable, its performance is not as good as
models with dynamical headways. However, it shows advantages such as being easier to
operate and more understandable to the passengers.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

With the increasing amount and range of urban mobility, making public transit more efficient has become a primary task
for many cities. Owing to its greater capacity, higher speed and increased reliability, rail-based metro systems, such as
Singapore’s ‘‘Mass Rapid Transit’’ (MRT), the London Underground and the Tokyo Metro are particularly important to a
metropolis. To improve service quality and reduce passenger waiting time, recent studies demonstrate an increasing interest
in designing efficient operation strategies—such as adjusting train speed dynamically, increasing or decreasing the dwell
time at stations and designing new service timetables—to improve metro service reliability. Of all these approaches,
timetable design has been accepted as the most straightforward and effective solution.

To provide user-centric public transit services, the principle of timetable design is to meet passenger demand, reduce
passenger waiting time and avoid overcrowding as far as possible (Ceder and Wilson, 1986). Without an in-depth under-
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standing of temporal demand patterns, operators’ straightforward and commonly adopted strategy is a peak/off-peak-based
schedule, where two types of service frequencies are set for peak and off-peak time, respectively. For example, the MRT sys-
tem in Singapore operates at double frequency during morning and evening peaks. This strategy is easy to apply and per-
forms well when supply is sufficient; however, given that passenger demand is not steady even during off-peak time,
waiting time under fixed headway is still unbalanced when passenger arrival rate varies with time. On the other hand, under
congested conditions or strong temporal demand heterogeneity, passengers might be unable to board a full train and they
have to wait for another train. In these cases, the peak/off-peak timetable may fail to meet the temporal demand with limited
supply. Furthermore, ignoring such demand dynamics may result in minor disruptions and poor service reliability. Thus,
understanding the temporal demand variation and adjusting service frequency dynamically become crucial, since commut-
ers are sensitive to their daily travel itineraries even at the minute level. Instead of assuming passengers will adjust their
behavior to the service given, transit operators must better understand the nature of demand dynamics and design
demand-sensitive timetables to meet greater demand with capacity-limited train services (Ceder, 2007; Niu and Zhou,
2013), reducing the risk of disruptions and attracting more ridership (Jin et al., 2013; Jin et al., 2014).

Lacking detailed passenger demand data, previous research works on scheduling mainly focused on an idealized transit
system (de Palma and Lindsey, 2001; Newell, 1971; Osuna and Newell, 1972), while only a few noted the importance of
passenger demand dynamics (Ceder, 1984; Ceder, 1986; Ceder, 2001). Thanks to the emergence of smart card-based auto-
mated fare collection (AFC) systems (normally on-board registration for bus systems, while off-board registration at fare
gantries for metro services), we can now extract the spatial–temporally stamped journey information on an individual level
from days to weeks, helping us to better understand demand variations.

In this paper, we present three optimization models for demand-driven timetable design. The first does not take train
capacity as a constraint, while the second and the third allow for limited capacity constraints. The contributions of this paper
are twofold; first, we propose three demand-driven timetable design models, the results of which can be further used as
operational guidelines and benchmarks; second, we use smart card data to conduct an in-depth analysis of daily transit
demand pattern variation and obtain detailed spatial–temporal service loading profiles.

The remainder of this paper is organized as follows: in the next section, we review previous studies on timetable design
problems and the use of smart card data in transport modeling; in Section 3, we introduce our single-track timetable design
problem and set out three different formulations; in Section 4, we employ a metro line in Singapore as a case and analyze the
corresponding demand variation. Using the performance of the proposed models, we demonstrate the balance of different
parameters against timetables in Section 5; finally, we summarize our main findings and discuss future work in Section 6.
2. Background

Previous studies on timetable design can be divided into two categories:

(1) Network timetable design problem; and
(2) Single track timetable design problem.

A network timetable design problem attempts to set up a timetable for multiple services in a connected transit network.
The most common objective is to minimize transfer cost through transit coordination and synchronization among different
routes. These problems have been investigated extensively on both bus networks (Ceder, 2001; de Palma and Lindsey, 2001;
Ibarra-Rojas and Rios-Solis, 2012; Rapp and Gehner, 1976; Ting and Schonfeld, 2005) and metro networks (Caprara et al.,
2002; Liebchen, 2008; Wong et al., 2008). Essentially, the motivation for synchronization arises from services with longer
headway and higher reliability; transit services in rural areas might be a good example illustrating these characteristics.
In this case, passenger waiting time can be reduced by increasing the simultaneous vehicle arrivals at transfer points. In
other words, when timetables are independent (without synchronization), missing a connection will result in long delay.

In this paper, we treat the demand-driven timetable design as a single track scheduling problem. This issue was first
introduced to urban bus systems as setting service frequency. Furth and Wilson (1981) proposed a model to find optimal
headway by maximizing social welfare, which included both ridership benefit and waiting-time savings. The corresponding
constraints were total subsidy, fleet size and occupancy levels. However, due to lack of data, the importance of time-depen-
dent demand was not addressed and frequencies were assumed to be constants during peak and off-peak time, respectively.
To characterize the time-dependent nature of transit demand and take crowding cost into account, Koutsopoulos et al.
(1985) extended this model using a non-linear programming model. With the development of data collection techniques,
Ceder (1984) first addressed the importance of ridership information and stated that service frequency should correspond
to temporal passenger demand. This study summarized and analyzed four data collection techniques and evaluated their
efficiency, using a frequency-setting problem, suggesting that a comprehensive load profile (ride check) is always superior
to stop check (point check). However, the cost of such a ride check is much higher setting service because of the labor-inten-
sive manual data collection. In a follow-up study, Ceder (1986) introduced an alternative approach for timetable design, with
the objective of maximizing the correspondence of vehicle departure times with dynamic passenger demand. To evaluate the
contribution of automated data collection system (ADCS) techniques, an automated procedure for efficiently setting bus time
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timetables was demonstrated. Given the nature of time-varying demand, Ceder (2001) proposed a scheduling model to
replace constant headway by making transit vehicles even-loaded.

Compared to bus systems, a metro system is more reliable regarding operation speed, dwell time at stations and service
regularity, providing a better field to simplify service-scheduling problems. Chang and Chung (2005) considered both flex-
ibility of service rescheduling and the process of defining timetables, providing a quick response in service regulation and
constructing new timetable when an incident occurs. To control irregularity caused by stochastic variations in passenger
demand and traffic conditions, a real-time control strategy was introduced to maintain headway regularity by minimizing
total headway variance Ding and Chien (2001). This strategy was further tested by simulating a LRT (Light Rapid Transit)
service in Newark, New Jersey. The vehicle holding problem was formulated as a deterministic quadratic program for a loop
network with equal scheduled headways (Eberlein et al., 2001). Peeters and Kroon (2001) proposed a method to design an
optimal cyclic passenger-rail timetable, in which trains depart at the same minute every hour. By applying the periodic
event-scheduling problem in a graph model (Serafini and Ukovich, 1989), Liebchen (2008) designed a timetable with shorter
passenger waiting time. This timetable has been implemented on the Berlin subway system in daily operation and it is
reported that both passengers and transit operators profit from this timetable. Kaspi and Raviv (2012) proposed an inte-
grated line planning and timetabling framework with the objective of minimizing operation cost and passenger cost, which
includes waiting time at both origins and transfer stations. However, for a single track timetabling problem on frequent
metro services with high demand—in particular during peak hours—the primary objectives are to meet the high demand
by train services with limited capacity and to reduce passenger waiting time as much as possible (Niu and Zhou, 2013).
In this situation, ensuring that passengers can board a train becomes operators’ primary task and understanding the varia-
tion of passenger demand becomes crucial.

The implementation of smart card-based AFC system has generated large quantities of high-quality data, recording
passenger activities with detailed time and location information. It offers a comprehensive profile on passenger demand var-
iation. It has been publicly recognized that the potential benefit of smart card data on improving public transit planning and
operation is enormous (Pelletier et al., 2011). In fact, AFC can replace automated passenger counting (APC) system by record-
ing both passenger tapping-ins and tapping-outs, helping us obtain accurate load profiles for both bus service (Lee et al.,
2012) and metro service (Sun et al., 2012). Smart card data offers us an excellent opportunity to identify the demand pattern
for both spatial and temporal variation.

3. Timetable design problem

In this section, we first present a detailed description of the demand-driven timetable design problem for single track
metro services. Assumptions are proposed based on operational characteristics. Then, we demonstrate three mathematical
programming models to design demand sensitive timetables:

� Model (A): trains without capacity constraints (optimal design).
� Model (B): trains with limited capacity (optimal operation).
� Model (C): trains with limited capacity (optimal peak/off-peak).

3.1. Modeling framework

To explore temporal variation patterns of passenger demand, we first measure the rate of metro trips on a typical
weekday. Fig. 1 shows the demand variation of the whole EW line in Singapore from April 11th, 2011 to April 15th, 2011
(including both directions; averaged across weekdays), together with the temporal service headway extracted from Google
Maps. In contrast to the pre-defined constant headway in peak and off-peak time, we see that passenger demand exhibits a
significant degree of temporal variation. In this case, the metro system may suffer from greater total waiting time resulting
from unbalanced passenger demand and fixed service headway. When demand is further increased, some passengers may be
left behind if a coming train is full. Therefore, an optimal timetable should better meet dynamic passenger demand and
reduce total waiting time, particularly when supply is limited. Our motivation is to make service timetables consistent with
time-dependent passenger demand; our approach is to determine service departure times dynamically to minimize total
passenger waiting time.

In a previous study, Sun et al. (2012) proposed a regression model to extract train trajectories as a first step in describing
demand patterns and modeling of service operations. The result also demonstrates service reliability of the EW line of
Singapore’s MRT system; the extracted train trajectories are parallel with each other. Therefore, in the context of reliable
operations (trains operated at same speed and without disruption), the timetable design problem is to plan train departure
time from its terminus. Next, we use Fig. 2 to simplify train operation processes for convenience of formulation.

When train services are operated with high reliability, headway between two successive trains should be steady from the
departure terminal to the final destination, resulting in identical trajectories across all runs (Sun et al., 2012). In this case,
train trajectories can be approximated by a straight line in a spatial–temporal panel (see Fig. 2(a)). Although trains depart
in continuous temporal scale, we model train departure times as discrete values to simplify this problem. In fact, formulation
with discrete decision variables is more applicable and convenient for real-world operation as well. For example, the
so-called ‘‘clock-face’’ headways are easy to memorize and operate (Ceder, 2007):
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Fig. 1. Demand and headway variation of the EW line over time of day.
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Fig. 2. Descriptions of discrete departure time and equivalent time interval.
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� 6 min interval: vehicles depart at 0, 6, 12, 18, 24, 30, . . ., 60 min in an hour.
� 10 min interval: vehicles depart at 0, 10, 20, 30, 40, . . ., 60 min in an hour.
� 15 min interval: vehicles depart at 0, 15, 30, 45, 60 min in an hour.

Therefore, continuous time can be rescaled to discrete values given a pre-defined interval. In cases where headways are
even shorter and vary over time, the interval can be defined as the greatest common divisor of headways in a similar way.
Hence, time can be rescaled to discrete values as well. For example in Fig. 2(a), trains depart from the terminus at the time
t ¼ f1;3;8;17; . . .g. However, the unit of time interval can be any values, such as 30 s, 1 min, or 2 min, depending on
operating requirement.

Thus, passengers at the terminus can also be grouped into time intervals given their entering times. However, considering
that it takes time for trains to travel from one station to another (the operation offsets shown in Fig. 2(a)), passengers
entering different stations at the same time do not share the same attribute; they may not board the same train. To better
model passenger demand based on train operation, we need to rescale time correspondingly for each station. Inspired by the
concept of ‘moving time coordinate’ (Newell, 1993), we propose the concept of equivalent time to synchronize train
operation and passenger demand collectively. For any station si, its equivalent time is defined as the exact time minus its
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operation offset (see Fig. 2(b)). Through this transformation, we can re-define the passenger demand as a two-dimensional
matrix—Bu

s —representing the number of passengers entering station s at equivalent time interval u.
Thus, train service operation can be simplified into a discrete process. Taking Fig. 2(b) as an example, passengers in B6

2;B
7
2,

and B8
2 may board Train 3, which runs at the end of equivalent interval 8.
3.2. Assumptions and operational constraints

Given the previous problem description, we make the following assumptions:
3.2.1. Assumptions

A1 Reliable services: Trains run at the same speed and dwell time, their trajectories are identical. This is a major assump-
tion to simplify service operation processes explained in the previous section. It is also a strong one, since train
services are not always punctual to timetables given various disturbances. For the case in Singapore, metro systems
are automatically or semi-automatically operated, making themselves more resilient to disturbance by adjusting
speed and dwell time in real-time. This assumption was tested in a previous study (Sun et al., 2012), where we find
that trains can be operated regularly in disruption-free scenarios from the observed identical trajectories.

A2 Uniform arrival: For any station s, passengers arriving at equivalent interval t are distributed uniformly, which is
proposed to simplify measurement of total waiting time. A number of service reliability studies suggest that this
assumption is reasonable for transit service with short headway (such as metro services). However, passengers
may have prior knowledge about service timetables when frequency is low and they tend to adjust their departure
time accordingly (Furth and Muller, 2006). The operation constraints are identified before we formulate the model.
We introduce the following operation constraints:

3.2.2. Constraints

C1 Discrete departure time: trains are restricted to depart at the end of equivalent interval t.
C2 Operation cost: number of daily services is fixed.
C3 Operation safety: headway should not be less than the minimum requirement.
C4 Service level: all passengers should be accommodated within a certain time, such as 20 min.
C5 Last service: departure time of the last service is predefined.

3.3. Model formulation

We now formulate mathematical programming problems that determine the departure time of each service. To measure
passenger waiting time, we first define the set of waiting profiles p based on equivalent time intervals:

p: if passengers who enter stations in interval u board the train service departing at the end of interval t t P uð Þ, their
waiting profile is defined as p ¼ t � uþ 1 (see Fig. 3 for description).
Fig. 3. Description of waiting profile p.
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Given the uniform arrival assumption, passengers have an average wait time p� 0:5 (in number of equivalent intervals) if
they choose waiting profile p. Assuming the designed timetable should serve every passenger in time, i.e. Constraint C4, the
set of waiting profile should be upper bounded. Taking all assumptions and constraints, we formulate the timetable design
process as an optimization problem minimizing passengers’ total waiting time. Before presenting the formulations, we first
define the following notations.

3.3.1. Notation
The following sets, indices, and parameters are used:
Sets:

T: set of equivalent time intervals. T ¼ f1;2; . . . ; Tng.
S: set of stations, excluding the final destination. S ¼ f1;2; . . . ; Sng.
P: set of waiting profiles. P ¼ f1;2; . . . ; Png.

Indices:

t: index of equivalent time intervals for train services. t 2 T.
u: index of equivalent time intervals for passengers. u 2 T .
s: index of metro stations. s 2 S.
p: index of waiting profiles. p 2 P.

Parameters:

Tn: number of equivalent time intervals.
Sn: number of metro stations, excluding the final destination.
Kn: number of daily train services.
Pn: number of waiting profiles.
Bu

s : demand profile, representing number of passengers arriving at station s in equivalent time interval u.
Nmax: maximum service headway, in number of equivalent intervals.
Nmin: minimum service headway, in number of equivalent intervals.

3.3.2. Model (A)
Here we assume that trains have unlimited capacity. In other words, a train can carry all passengers waiting for it. Given

the reliable service assumption, as long as passengers arrive at a station in the same equivalent interval u, they will share the
same waiting profile (i.e. the average waiting time of passengers groups Bu

s 8s 2 S is the same). In this model, we define two
sets of decision variables:

Decision variables:

xt :2 0;1f g; 8t 2 T: 1 if a train departs from terminal at the end of equivalent interval t; and 0 otherwise.
yu;p; 8u 2 T; 8p 2 P: the proportion of passengers entering stations in equivalent interval u choosing waiting profile p.

Given the uniform arrival assumption, the average waiting time wu of passenger entering at equivalent u can be calcu-
lated as:
wu ¼
X
p2P

yu;p p� 0:5ð Þ ð1Þ
By defining total passenger demand in equivalent interval u across all stations as Bu ¼
P

s2SBu
s , the timetable design problem

is formulated in the following mathematical programming:
[Model (A)]X
min
u2T

Buwu ð2Þ
subject to:
xt 2 f0;1g; 8t 2 T ð3ÞX
t2T

xt ¼ Kn ð4Þ
X

t2 t1 ;t2½ �
xt 6 1; t2 ¼ t1 þ Nmin � 1; 8t1; t2 2 T ð5Þ

X
t2 t1 ;t2½ �

xt P 1; t2 ¼ t1 þ Nmax � 1; 8t1; t2 2 T ð6Þ

xTn ¼ 1 ð7Þ
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CA1

0 6 yu;p 6 1; 8u 2 T; 8p 2 P ð8Þ
CA2 X

p2 1;min Tn�uþ1;Pnð Þ½ �

yu;p ¼ 1; 8u 2 T ð9Þ
CA3

xt P yu;p; t ¼ uþ p� 1; 8t 2 T; 8p 2 P ð10Þ
Objective function (1) minimizes the total waiting time over all passengers. Constraints (2)–(7) correspond to the pre-
defined operational constraints C1–C5. Constraint (8) and (9) ensure that all passengers are assigned waiting profiles.
p 2 1;min Tn � uþ 1; Pnð Þ½ � guarantees that the size of waiting profiles is reduced for passenger arriving after u ¼ Tn � Pn.
Constraint (10) guarantees consistency between boarding passengers and train services; if there are passengers assumed
to board at the end of interval u, there must be one train serving people at that equivalent time (see Fig. 3). Taken together,
Model (A) is formulated as a mixed integer programming (MIP) problem.

A strong assumption of this model is that trains have unlimited capacity and passengers can always board the first com-
ing train. In other words, this result provides us the optimal timetable only if service capacity is sufficient to carry all the
waiting passengers. Nevertheless, if we consider the current metro operation as a feasible case with few people unable to
board due to the capacity constraint, Model (A) still has the potential to design a more dynamical timetable compared to
the peak/off-peak schedule. Furthermore, Model (A) may provide implications on the optimal time-dependent service capac-
ities. By applying the optimal timetable on the current demand, we may get the maximum occupancy in temporal scale,
helping us identify best train configurations over time of day. For example, in order to provide more space for standees
and to increase the total capacity using the same number of train cars, operators usually run coaches with fewer seats in
peaks hours in Singapore.

However, when demand further increases or temporal heterogeneity becomes more significant, Model (A) may fail to
capture the additional waiting time caused by passengers left behind by a full train, particularly during peak time. To address
this limitation, we extend Model (A) to take these capacity constraints into account.

3.3.3. Model (B)
To model limited service capacity and its consequences, the following additional parameters are introduced:
Parameters:

CAP: service capacity (number of onboard passengers should not exceed CAP).
Bu

s;d : temporal demand profile indexed by both boarding station and alighting station, representing number of passengers
entering station s in equivalent interval u with destination d. By dividing Bu

s ¼
P

d2SBu
s;d in Model (A) using destinations,

we are able to quantify the spatial occupancy of each train.

Decision variables:

xt :2 f0;1g: 1 if there is one train serving at the end of equivalent interval t; and 0 otherwise.
ys

u;p: The proportion of passengers entering station s in equivalent interval u choosing waiting profile p. This
variable is an extension of yu;p in Model (A), since passengers at different stations no longer share similar
attributes. If the surplus capacity of the first coming train is limited, only part of the waiting passengers
Fig. 4. Description of ys
u;p (� means all waiting profiles p 2 P (Pn ¼ 10)).
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can board the train; the rest have to wait for the following service. For the example shown in Fig. 4, 90% of
the waiting passengers who entered station k at u to uþ 3, can board on the first train. Therefore, ys

u;p is a
continuous value within 0;1½ � in this model.

qs
t: occupancy of train services departing at the end of t at station s (s 2 1; Sn � 1½ �) after alighting and boarding.

Because of capacity constraints, passengers arriving in u no longer share the same waiting profile, as they might be unable
to board if the coming train is full. Hence, the average waiting time of passenger group Bu

s is calculated as:
wu
s ¼

X
p2P

ys
u;p p� 0:5ð Þ ð11Þ
Then, the capacity incorporated timetable design problem is formulated as:
[Model (B)]
min
X
s2S

X
u2T

Bu
s wu

s ð12Þ
where Bu
s ¼

P
d2SBu

s;d.
subject to:
xt 2 f0;1g; 8t 2 T ð13ÞX
t2T

xt ¼ Kn ð14Þ
X

t2 t1 ;t2½ �
xt 6 1; t2 ¼ t1 þ Nmin � 1; 8t1; t2 2 T ð15Þ

X
t2 t1 ;t2½ �

xt P 1 t2 ¼ t1 þ Nmax � 1; 8t1; t2 2 T ð16Þ

xTn ¼ 1 ð17Þ
CB1
0 6 ys
u;p 6 1; 8s 2 S; 8u 2 T; 8p 2 P ð18Þ
CB2
 X
p2 1;min Tn�uþ1;Pnð Þ½ �

ys
u;p ¼ 1; 8s 2 S; 8u 2 T ð19Þ
CB3
xt P ys
u;p; t ¼ uþ p� 1;8s 2 S;8t 2 T;8p 2 P ð20Þ
CB4
qs
t ¼

X
u2max 1;t�Pnþ1ð Þ;t½ �

X
d2 2;Sn½ �

Bu
1;dy1

u;t�uþ1 s ¼ 1; 8t 2 T

qs�1
t �

X
u2max 1;t�Pnþ1ð Þ;t½ �

X
o2 1;s�1½ �

Bu
o;sy

o
u;t�uþ1 þ

X
u2max 1;t�Pnþ1ð Þ;t½ �

X
d2 sþ1;Sn½ �

Bu
s;dys

u;t�uþ1 8s� 1; s 2 S; 8t 2 T

8>><
>>:

ð21Þ
CB5
qs
t 6 CAP; 8s 2 S;8t 2 T ð22Þ
Objective function (23) minimizes the total waiting time. Constraints (13)–(17) correspond to the pre-defined operational
constraints. Additional constraints CB1 � CB5 are due to the following:

Constraint (18) and (19) ensure that all passengers are assigned waiting profiles. Constraint (20) guarantees consistency
between boarding passengers and train services as well; if there are passengers supposed to board at the end of interval u,
there must be one train serving people at that equivalent time (see Fig. 4). Constraints (21) quantifies the spatial–temporal
occupancy. Constraint (22) corresponds to the limited capacity, ensuring that occupancy is not more than capacity. Similar to
Model (A), Model (B) is also a MIP; however, the problem is much larger, considering that the decision variable yu;p has been
increased for one dimension to ys

u;p and additional constraints regarding service capacity have been added.

3.3.4. Optimal capacitated peak/off-peak timetable
We also introduce another model to find optimal peak/off-peak timetable. We define two additional parameters:
Parameters:

NPeak: headway (in number of intervals) in peak periods.
NOff : headway (in number of intervals) in off-peak periods. To avoid too much imbalance between peak and off-peak ser-

vices. We let NOff < 3NPeak.
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This model has the same decision variables and objective function as Model (B).
[Model (C)]
min
X
s2S

X
u2T

Bu
s wu

s ð23Þ
subject to Constraints (13), (14), (17)–(22) and:
xtþNPeak
þ xtþNOff

P xt ; 8t; t þ NPeak; t þ NOff 2 T ð24ÞX
t2 t1 ;t2½ �

xt 6 1; t2 ¼ t1 þ NPeak � 1; 8t1; t2 2 T ð25Þ
Constraint (24) ensures that headway should be chosen as NOff of NPeak. On the other hand, we need to also avoid both peak
and off-peak headways being selected at the same time. In doing so, we can simply impose another constraint:
xtþNPeak
þ xtþNOff

6 1; 8t; t þ NPeak; t þ NOff 2 T ð26Þ
when NOff – 2NPeak. If NOff ¼ 2NPeak, Constraint (26) should be removed as both xtþNPeak
and xtþNOff

can be 1 during peak period.
Note that this model does not limit the number of transitions between peak and off-peak strategy. However, given the

strong temporal demand pattern, we do expect the model to provide timetables with a consistent peak/off-peak structure.

3.4. Complexity analysis

The metro service timetable design problem without capacity consideration is equivalent to the one-dimensional Facility
Location Problem (Love, 1976) where all facilities and customers are all restricted to a Euclidean line: trains and passengers
correspond to facilities and customers, respectively; the train departure decision corresponds to the facility location selec-
tion; the passengers’ waiting time corresponds to the distance from demand points to facility locations; the amount of pas-
sengers corresponds to the weighting factor of demands. The unique feature of the metro timetable design problem is that
demands can be only assigned to facilities with larger coordinates along the line since passengers can only board trains after
their arrival. To solve the uncapacitated version of the location problem on a line, Love (1976) proposed a dynamic program-
ming algorithm, which can be easily adopted to solve the uncapacitated metro service timetable design problem with minor
adjustment. Thus, the uncapacitated metro service timetable design problem can be solved in polynomial time.

Similarly, if we consider a special case of the capacitated metro service timetable design problem where the minimum or
maximum headway consideration is not considered, the resulted problem is equivalent to the capacitated p-Facility Location
Problem on a real line (Brimberg et al., 2001). The authors proved that the addition of capacity constraints for facilities
renders the problem to be NP-hard. Thus, the train service timetable design problem with capacity consideration is also
NP-hard.

In this paper, we simply employ standard solvers (e.g., CPLEX) to solve the uncapacitated and capacitated metro service
timetable design problems (Model (A), (B) and (C)), as computational experiments show that both models can be solved
within acceptable time.
4. Case study

So far, we have formulated three different MIPs on the single-track timetable design problem. To test performance of the
proposed timetable design formulations, we conduct a case study based on one MRT line in Singapore. In this section, we first
introduce the smart card transaction data and then briefly discuss the case line.

4.1. Data preparation

Since the late 1990s, smart card-based automated fare collection (AFC) has been widely applied in cities all over the
world, such as London (Oyster), Tokyo (Suica), Singapore (CEPAS) and Washington (Smarttrip). The AFC system was intro-
duced in Singapore in April, 2002. With increasing usage over the last decade, it now covers all metro trips and more than
93% of bus trips (the rest are cash payments). Although the goal of this system is to make fare collection faster and more
convenient for transit users, the system also generates large quantities of data, recording time and location-stamped transit
use for each individual passenger.

Compared to entry-control system, such as in Outaouais Region, Canada (Trépanier et al., 2007) and Santiago, Chile
(Munizaga and Palma, 2012), this AFC system in Singapore records both entry and exit information, making the data source
highly comprehensive for research purposes. To better understand the demand variation of metro services, we employ one
week’s smart card transactions from April 11th, 2011 to April 17th, 2011. The data recorded both bus and MRT trips. A full
trip record can be represented as a tuple id; to; lo; td; ldð Þ, suggesting that passenger id departed from origin station/stop lo at
the time to and arrived at destination station/stop ld at the time td. This information enables us to obtain the input
parameters Bu

s;d for the timetable design problem.



Table 1
Time offset table for estimating demand over equivalent time.

Station 1 2 3 4 5 6 7 8 9 10 11 12

Offset [s] 0 178 309 492 646 806 922 1039 1160 1291 1408 1525
Station 13 14 15 16 17 18 19 20 21 22 23 � � �
Offset [s] 1637 1749 1870 1982 2118 2239 2370 2491 2608 2739 2884 � � �
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4.2. Case: the EW Line

We chose one line from the MRT system in Singapore as an example. To convert real time to the defined equivalent time
interval, we applied the travel time regression model in (Sun et al., 2012) to estimate the offset for each station. The results
are provided in Table 1.

4.3. Passenger demand

Smart card data has been used to study transit macroscopic demand patterns and their variation by many researchers. For
example, Agard et al. (2006) analyzed smart card data collected from Outaouais Region, Canada and identified different trip
habits and variability based on pre-defined user types. Utsunomiya et al. (2006) found that the demand pattern varied with
day of the week, especially for weekdays and weekends. Therefore, transit operators are urged to use different schedules
from day to day. Park et al. (2008) investigated and characterized the demand pattern of different transport modes in Seoul,
South Korea. However, we need to measure the temporal demand Bu

s;d in microscopic detail. In order do so and characterize
the variability of Bu

s from day to day, we first distinguish two types of metro trips:

Full trips: Both entry and exit stations are on the selected service line.
Partial trips:Only part of the metro trip is on the selected line. (At least one station is not on the line.)

Therefore, the demand matrix Bu
s is the combination of full and partial trips. As opposed to bus systems, the tapping-in

time is registered at fare gantries instead of on transit vehicles, making it easy for us to obtain the temporal demand.
However, for partial trips, we have to identify which segments of the selected line the passenger has traveled, and then
add this part on to the full trip demand.

To solve this problem, we apply the MATSim agent-based transport simulation toolkits to reconstruct the daily scenario
(MATSim, 2013). To find the segment these passengers traveled (s and d on the subject line), partial trips are simulated on
the whole metro network. Using travel time as utility, we find that about half of the trips on the selected line are full trips
and the other half are partial trips. After combining these two demand sources, we begin to estimate the final temporal
demand Bu

s .
Using the calculated time offsets and directed/transfer trip information, we estimate each element in the temporal

demand Bu
s . Fig. 5 plots the average demand profile for different stations over weekdays. As can be seen, demand is smooth

and steady for most times of day; however, significant morning and evening peaks emerge at most stations.
Fig. 5. Passenger demand over equivalent time.



Table 2
Cosine similarities of boarding demand and of on-board demand.

SimB (Mon) (Tue) (Wed) (Thu) (Fri) (Sat) (Sun)

(Mon) — .97 .97 .96 .96 .76 .68
(Tue) .97 — .97 .96 .96 .76 .68
(Wed) .97 .97 — .97 .96 .76 .69
(Thu) .96 .96 .97 — .96 .77 .69
(Fri) .96 .96 .96 .97 — .80 .73
(Sat) .76 .76 .76 .77 .80 — .92
(Sun) .68 .68 .69 .69 .73 .92 —
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4.4. Demand variation

To explore the day-to-day variation of passenger demand, we use cosine similarity to measure the spatial–temporal
variation of both boarding demand and on-board demand. First, for boarding demand, after filling the demand matrix
Bu

s 8s;8uð Þ for each day, the boarding demand similarity between day i and day j is defined as:
Table 3
Input p

Para

Ds
Tn

Sn

Kn

Pn

Nmax

Nmin

Bu
s

CAP
SimB i; jð Þ ¼
P

s2S

P
u2T bi

s;ubj
s;uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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2
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s2S

P
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s;uÞ

2
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where bi
s;u ¼

Bu
s ðiÞP

s

P
u

Bu
s ðiÞ

is distribution of boarding demand at day i. Therefore, the value of similarity is between 0 and 1. The

more similar the two matrices are, the nearer to 1 SimB is.
Based on the demand data, we calculate SimB during weekdays. Table 2 shows the cosine similarity of both boarding

demand and on-board demand with equivalent interval length Ds ¼ 1 min. Note that all values of weekday boarding demand
similarity are larger than 0.95, indicating a strong similarity between each day; day-to-day demand variation is tiny and
negligible. The analysis shows that daily transit demand on the selected line exhibit a strong degree of homogeneity.

Hence, for convenience, we use an average demand profile over weekdays to test the proposed models’ performance in
the following analysis.

5. Results and analysis

In this section, we evaluate the performance of these three models based on the case line introduced in previous section.
We consider two cases here: Case 1 is a major problem, covering the entire metro line across whole operation time; Case 2 is
a minor problem confined to the morning peak, consisting of only 15 stations. The detailed parameters of these two cases are
listed in Table 3. We first use Case 1 to compare the overall performance of Model (A), (B) and (C).

All computation experiments were conducted on a PC with an Intel Core i7 3.40 GHz with 16 GB RAM. The proposed
Models (A), (B) and (C) are coded in CPLEX solver 12.5, using the standard configuration of CPLEX solver, which usually
employs the Branch-and-Bound algorithm for MIP models. Table 4 summarizes the computational costs of these three mod-
els using both the major and minor cases.

5.1. Optimal results

As the length of peak period headway and off-peak headway are parameters in Model (C). Based on the constraints on
headway Nmin 6 NPeak < NOff 6 Nmax and NOff < 3NPeak, the parameter set of ðNPeak;NOff Þ is fð2;3Þ; ð2;4Þ; ð2;5Þ; ð3;4Þ; ð3;5Þ;
ð3;6Þ; ð3;7Þ; ð3;8Þ; ð4;5Þ; ð4;6Þ; ð4;7Þ; ð4;8Þ; ð4;9Þ; ð4;10Þ; . . .g. We tested all possible combinations of ðNPeak;NOff Þ, finding that
those feasible are (3,8), (4,7), (4,8), (4,9), (4,10) and (5,7). In all these cases, the model provides consistent peak/off-peak
timetables with four transitions. The least waiting time is obtained when NPeak ¼ 4 and NOff ¼ 8.
arameters of case studies.

meter Case 1 Case 2

1 min 1 min
1021 (6:00–23:00) 181 (6:00–09:00)
24 15
165 40 [35–55]
20 (maximum waiting time 20 min) 20 (maximum waiting time 20 min)
10 (maximum headway 10 min) 10 (maximum headway 10 min)
2 (minimum headway 2 min) 2 (minimum headway 2 min)
Obtained by averaging weekday demand Obtained by averaging weekday demand
2000 pax/service 2000 [1900–2500]



Table 4
Computational results of Model (A) and (B).

Running time [s] Case 1 (Major) Case 2 (Minor)

Model (A) 1.17 0.20
Model (B) >3600.00 161.17
Model (C) >3600.00 –
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To explore the variation of optimal timetables from these models, we plot the temporal headway by calculating the
difference between sequential departure times for three scenarios in Fig. 6(a): (1) peak/off-peak, (2) optimal solution of
Model (C), (3) optimal solution of Model (A) and (4) optimal solution of Model (B), respectively. As can be seen in
Fig. 6(a), timetable (3) and (4) display more consistence with temporal passenger demand compared to (1) and (2). The
figure also helps us distinguish the optimal solutions from each other. Owing to capacity constraints, we see clearly that
timetable (4) operates more trains than timetable (3) during morning peaks.

To estimate the desired occupancy (when no passengers are left behind) of train services, we map passenger demand Bu
s;d

on timetable (1) and (3), respectively, to calculate the corresponding spatial temporal occupancy of each train. We determine
the maximum occupancy of a train departed at the end of t as Q t ¼max

s2S
qs

t

� �
and use it to measure the importance of capac-

ity constraints for all the three timetables (Fig. 6(b)). Obviously, Q t is always less or equal to 2000 for Model (B) and (C) (see
the second and the bottom inset of Fig. 6(b)). However, we found that Qts of both timetable (1) and (3) exceed 2000 during
morning and evening peaks, suggesting that the passenger demand at these equivalent intervals may not be met effectively if
service capacity is fixed at 2000, resulting in additional waiting time when some passengers are left behind.

To measure the actual/congested waiting time W 0
u of timetable (1) and (3), we calculate the spatial occupancy of each

train based on Bu
s;d by tracking parameter qu

s , demonstrating the ratio of left-behind passengers. To quantify qu
s , we first

map the tested timetable on the same panel as in Fig. 2(b) and assume that left-behind passengers and new arriving passen-
gers have the same chance to board on the coming train when occupancy reaches capacity. Then, the ratio q of left-behind
passengers over all waiting passengers for each station and each train can be calculated. The estimation of qu

s also helps us
measure the total waiting time Ws;k for Train k at Station s. In general, Ws;k consists of waiting time of boarding passengers

W1
s;k and left-behind passengers W2

s;k. Taking Station 2 in Fig. 2(b) as an example, if no passengers are left by Train 2, passen-
gers who arrived in equivalent interval 4–8 have the same chance to board train 3, with total waiting time measured as

W1
2;3 ¼

P8
u¼4 1� qð ÞBu

s;� 8� uþ 0:5ð Þ, where Bu
s;� ¼

P
d2SBu

s;d. Next, we can move the passengers left behind qBu
s;� 4 6 u 6 8ð Þ to

B9
s;� and charge them with full waiting time as: W1

2;3 ¼
P8

u¼4qBu
s;� 8� uþ 1ð Þ. By applying this procedure iteratively, we can

measure both spatial–temporal occupancy and total waiting time under capacity constraints simultaneously.
As Table 5 shows, timetable (4) performs best and average waiting time from timetable (3) is 6.2% higher. The average

waiting time of the timetable (2) is about 3.23 min (10.5% higher than (4)). The current peak/off-peak timetable (from Google
Maps) offers the longest waiting time (46.3% higher than (4)). We also measured the number of passengers that are
Fig. 6. Headway profile and maximum occupancy from peak-based schedule, Model (C), Model (A) and Model (B).



Table 5
Waiting time under different scenarios.

Timetable W 0
u [min] Left-behind (pax)

(1) Peak/off-peak 4.277 (+46.3%) 147,434
(2) Model (C) 3.232 (+10.5%) 26,924
(3) Model (A) 3.106 (+6.2%) 19,991
(4) Model (B) 2.924 (+0.0%) 638
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left-behind by the first coming train. In this case, the peak/off-peak timetable is the worst because of the large number of
passengers who cannot board due to limited service capacity (about 231 times larger than timetable (4)). Timetable (2)
and (3) are comparable with number of left behind 26,924 (42 times) and 19,991 (31 times), respectively.

To test the robustness of our results, we conducted a training/testing experiment by using demand from Monday to
Wednesday as input to determine optimal timetable (4), and testing such timetable on passenger demand on Thursday
and Friday, respectively. The timetable determined by demand from Thursday is identical to the one from Monday to
Wednesday. Applying the same timetable on demand of Friday results in average waiting time 2.93 min, while the waiting
time of the best timetable (estimated using Fri demand) is 2.91 min. Given the result, we would argue that variation from
daily operation is marginal in determining the timetable compared to weekly, monthly or seasonal variation of demand.
Nevertheless, given that smart card data is available from daily operation, we suggest using demand from previous week
to design timetables for the current week.

To further quantify the benefit of dynamical timetables under demand variation, we access their performance by adjust-
ing the current demand (from 85% to 115%). Fig. 7 shows the sensitivity analysis of average waiting time and number of
delayed passengers given the demand variation. As can be seen, the demand sensitive timetable (2), (3) and (4) show higher
resilience to the increase in demand than the current peak/off-peak timetable. However, timetable (4) still performs good
when demand increases 10%, while timetable (2) and (3) becomes more sensitive. Taken together, all the three models
can provide better timetables than the current peak/off-peak timetable.

Although capacity constraints are imposed on Model (C), timetable (2) performs not as well as (3) and (4) with current
demand, being limited by the strict choices of NPeak and NOff . On the contrary, Model (A) and (B) can still benefit from the
dynamical headway. Still, the optimal peak/off-peak schedule shows some advantages such as being easier to operate and
more understandable to passengers. Model (A) is as good as (B) when passengers are seldom delayed by the capacity
constraints (or train capacity is large enough). However, obviously, if passenger demand is further increased, Model (B) will
have significant advantages over Model (A) and (C). In fact, the solution of Model (A) gives a lower bound of average waiting
time since it offers equal weight to each passengers no matter if he/she can board or not. Any factors causing the violation of
capacity constraints will prevent Model (A) from performing optimally. Despite increasing passenger demand, some other
factors can also result in more passengers being delayed by capacity constraints, such as:

� Reduced number of services.
� Reduced service capacity.
Fig. 7. Performance of timetables under demand variation.



Fig. 8. Balancing number of services and timetable.
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Therefore, there are trade-offs among number of services, service capacity and timetable. Next, we use Case 2 to assess
these balances for Model (A) and (B).

In fact, as stated before, Model (A) provides biased results under congested condition. In this case, we cannot tell which
model is good taking only the computation time into account. To further evaluate their performance, we need to analyze the
results and perform sensitivity analysis.

Considering that the computation time for Model (B) is very long for the full case (Case 1), we use the minor case (Case 2)
to test sensitivity on number of services Kn and service capacity CAP.

5.2. Balancing number of services and timetable

We use morning peak hours from 6:00 to 9:00 to test the impact of number of services—Kn. For the peak/off-peak time-
table, Kn ¼ 36. To analyze the impact of Kn, sensitivity analysis is performed against Kn ¼ 34;36; . . . ;48;50. The results are
shown in Fig. 8.

As seen, Model (A) and Model (B) provide similar average waiting time results. However, the real performance of time-
tables using results from Model (A)—with capacity constraints—has to be tested using simulation. In this case, Model (B) is
always superior to the simulation using timetables obtained from Model (A), especially when the number of services is
limited (less than 45). When Kn ¼ 34, the real average waiting time is 4:51

2:64� 1 ¼ 70:8% higher than optimal result from Model
(B).

These results indicate that the capacity constraints effect is substantial when number of services is limited. When number
of services increases to 44, Model (B) does not produce different results from model (A) since capacity constrains are not a
factor any more.
Fig. 9. Balancing service capacity and timetable.
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5.3. Balancing capacity and timetable

As with many services, there is also a balance of service capacity. Sensitivity analysis is conducted with Kn ¼ 36 (same as
the peak/off-peak timetable) against CAP ¼ 1900;2000; . . . ;2500. The results are shown in Fig. 9.

Without considering capacity constraints, the ideal Model (A) always gives the best results with an average waiting time
of 2.36 min. Model (B) produces slightly more waiting time than the ideal results. However, the simulated Model (A)
provides quite different results than the ideal model. Owing to limited capacity, simulation on the obtained timetable from
Model (A) performs poorly with less service capacity. In this case, average waiting time of timetable (A) with CAP ¼ 1900 is
4:18
2:47� 1 ¼ 69:2% higher than timetable (B).

Taken together, in real operation, Model (B) always performs better than (A), particularly when resources, such as number
of services and services capacity, are limited. Rather than providing the optimal timetable, Model (A) actually provides the
benchmark for timetable design. On the other hand, as can be seen in Fig. 6(b), although the services occupancy may exceed
CAP, Model (A) shows what the crucial time is for operators to ramp up train capacity (by removing seats or setting up
foldable seats).

6. Conclusion and discussion

The emergence of smart card-based automated fare collection system, as implemented in Singapore, enables us to better
understand transit demand variation in a more detailed way. In this paper, we propose three models for demand sensitive
timetable design: the first model leaves train capacity out of account while the second allows for limited train capacity.

Both models are built on the concept of equivalent time (interval), which discretizes continuous time into discrete values.
Although the models seem to provide better results if the equivalent interval is shorter, the computation time and accuracy
of demand estimation will be important factors for application. In order to provide applicable strategy for our case, the
length of equivalent interval is chosen as Ds ¼ 1min. In addition, it also determines the validity of assumption A2, since
demand will change drastically if Ds is sufficiently small. The problem is also crucial for transfer stations where passengers
arrive in batch. In this case, the synchronization between different services may become more crucial. We use average wait-
ing time as a measure of passenger cost without penalizing left-behind passengers; however, left-behind passengers might
be more unsatisfied than passengers boarding the first coming train, given the same waiting time. Therefore, an additional
penalty can be applied in future analysis to consider the cost of dissatisfaction.

Most developed metro systems are represented by well-connected networks, rather than a single track (on which this
study has focused). For a simple network containing two intersecting tracks, we can still apply the concept of equivalent time
by calculating offset times against the point of intersection (e.g. the transfer station) on each track and account for a corre-
sponding transfer cost. In a more complex network with multiple transfer stations, though one may give priority to the main
track, the strategy of applying equivalent time need to be adjusted accordingly. Our future study will consider the network
case.

Considering that new timetables are designed using historical demand data, we cannot ascertain how much new demand
(in coming weeks, for example) will differ from historical and how passengers will adjust their traveling behavior given a
new timetable. Taking advantage of a continuous stream of smart card data, we can try to maintain demand homogeneity
by frequent updates, such as using demand from previous week to design a timetable for the current week. We will also try
to explore passenger response to a new timetable as a future research topic.

The proposed models are evaluated by simulating an MRT case service in Singapore; sensitivity analysis is conducted
based on a minor case. Examining our analyses together, Model (B) provides exact optimal dynamic timetables under capac-
ity constraints, whereas Model (A) shows significant potential for offering a dynamic timetable with dynamic capacity.
Although the timetable (2) performs not as well as (3) and (4) with current demand, it shows some advantages such as being
easier to operate and more understandable to passengers. All these optimal solutions can be used as benchmarks to measure
current service levels. A major limitation of this study is the absence of crew team scheduling, which is critical for calculating
transit operators’ cost. On the other hand, given the principle of dynamic timetables, optimal train schedules will no longer
involve regular intervals, but will vary over time. The irregular headway/arrival times would probably have an impact on
expectations of some punctual passengers, resulting in a potential barrier to implementation. Nevertheless, given the more uni-
form arrival times across a larger population, the dynamic timetable has substantial potential to reduce total waiting time.
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